1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
3 years ago
11

Electrons do not move unless they are attracted to an electromagnet True or false

Physics
2 answers:
andrezito [222]3 years ago
5 0

Answer: False

Explanation:

Tpy6a [65]3 years ago
3 0

The answer is false , because they move without an electromagnetic

You might be interested in
A police siren of frequency fsiren is attached to a vibrating platform. The platform and siren oscillate up and down in simple h
babunello [35]

Answer:

he maximum frequency occurs when the denominator is minimum

 f’= f₀  \frac{343}{343 + v_s}

Explanation:

This is a doppler effect exercise, where the sound source is moving

           f = fo \frac{v}{v-v)s}      when the source moves towards the observer

           f ’=f_o  \frac{v}{v+v_{sy}}  Alexandrian source of the observer

the maximum frequency occurs when the denominator is minimum, for both it is the point of maximum approach of the two objects

          f’= f₀  \frac{343}{343 + v_s}

8 0
3 years ago
Suppose the electrons and protons in 1g of hydrogen could be separated and placed on the earth and the moon, respectively. Compa
MAXImum [283]

Answer:

The gravitational force is 3.509*10^17 times larger than the electrostatic force.

Explanation:

The Newton's law of universal gravitation and Coulombs law are:

F_{N}=G m_{1}m_{2}/r^{2}\\F_{C}=k q_{1}q_{2}/r^{2}

Where:

G= 6.674×10^−11 N · (m/kg)2

k =  8.987×10^9 N·m2/C2

We can obtain the ratio of these forces dividing them:

\frac{F_{N}}{F_{C}}=\frac{Gm_{1}m_{2}}{kq_{1}q_{2}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{m_{1}m_{2}}{q_{1}q_{2}}   --- (1)

The mass of the moon is 7.347 × 10^22 kilograms

The mass of the earth is  5.972 × 10^24 kg

And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C

Replacing these values in eq1:

\frac{F_{N}}{F_{C}}}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{7.347\times5.972\times10^{46}kg^{2}}{(9.635\times10^{4})^{2}}

Therefore

\frac{F_{N}}{F_{C}}}}=3.509\times10^{17}

This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field

7 0
3 years ago
Two charged objects have a repulsive force of 0.040 N. If the distance separating the objects is doubled, then what is the new f
Georgia [21]

Answer:

Two charged objects have a repulsive force of 0.080 N. If the charge of both of the objects is doubled, then what is the new force? Explanation: Electrostatic force is directly related to the charge of each object. So if the charge of both objects is doubled, then the force will become four times greater.

Explanation:

hope this helps

7 0
2 years ago
A book is sliding across a horizontal desk and comes to a stop. the books kinetic energy was converted into what type of energy
Oliga [24]
Friction stole the book's kinetic energy, and turned it into heat energy ... which blew away in the breeze.
4 0
3 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
3 years ago
Other questions:
  • 7. Plasma from blood (density = 1025 kg/m3) flows along a vertical channel in a steady, incompressible, fully developed laminar
    14·1 answer
  • A bullet is fired horizontally with an initial velocity of 144.7 m/s from a tower 11 m high. if air resistance is negligible, wh
    10·1 answer
  • What type of reaction requires the greatest energy to get started? A. fusion B. fission C. physical D. chemical
    9·2 answers
  • Which is the best example of the law of conservation of energy?
    9·1 answer
  • How can the rate of a reaction be increased?
    12·2 answers
  • When a wave propagates through a medium the molecules of the medium?
    15·1 answer
  • How long will a plane have to fly continuously with 900 miles per hour in order to cover the same distance as that from Earth to
    14·1 answer
  • Three point charges lie in a straight line along the y-axis. A charge of q1 = -10.00 µC is at y = 6.40 m, and a charge of q2 = -
    6·1 answer
  • The teacher measured the maximum height and the minimum height of the plastic duck above the screen as the wave passed. The teac
    15·1 answer
  • a is any object that is launched into the air with an initial velocity and moves in the air only ander the influence of gravity
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!