Answer:
The horizontal component of displacement is d' = 1422.7 m
Explanation:
Given data,
The distance covered by the truck, d = 1430 m
The angle formed with the horizontal, Ф = 5.76°
The displacement is a vector quantity.
The horizontal component of displacement is given by,
d' = d cos Ф
= 1430 cos 5.76°
= 1422.7 m
Hence, the horizontal component of displacement is d' = 1422.7 m
Answer:
The range of wavelengths of the sound is 7692.30 m and 3846.15 m
Explanation:
A bat emits pulses of sound at a frequency between 39 kHz and 78 kHz. It is required to find the range of wavelengths of this sound.
Bat uses ultrasonic waves. It moves with the speed of light.
If f = 39 kHz,

If f = 78 kHz,

So, the range of wavelengths of the sound is 7692.30 m and 3846.15 m.
Answer:
Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties
Explanation:
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
Answer:
The answer should be C. slanted upward to the right.
Hope this helps. :-)