Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
a) since force = mass * acceleration
f= 900 * 0 (because constant speed = 0 acceleration)
similarly b) f = 0
Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Part f)

Part g)

Explanation:
Initial speed of the launch is given as
initial speed = 
angle =
degree
Now the two components of the velocity

similarly we have

Part a)
Now we know that horizontal range is given as

maximum height is given as

so we have

time of flight is given as



Part b)
Now the speed of the ball in x direction is always constant
so at the peak of its path the speed of the ball is given as



Part c)
Initial vertical velocity is given as


Part d)
Initial speed is given as

so we will have


Part e)
Angle of projection is given as



Part f)
If we throw at same speed so that it reach maximum height
then the height will be given as


Part g)
For maximum range the angle should be 45 degree
so maximum range is

