The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.
This can be easily understood by Columb's law,

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.
∴ 
Now, we know the new distance is half the original distance,


The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.
A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.
Learn more about electrical force here
brainly.com/question/2526815
#SPJ4
The most common liquid on planet earth is water
Answer:
Help me please?
Explanation:
Did you get the answer? I believe it’s either C. +q or D. 0
Answer:
The answer is
<h2>2560 J</h2>
Explanation:
The kinetic energy of an object given it's mass and velocity can be found by using the formula

where
m is the mass
v is the velocity
From the question
m = 80 kg
v = 8 m/s
The kinetic energy is

We have the final answer as
<h3>2560 J</h3>
Hope this helps you
Answer:
a)143.8 decays/minute
b)0.41 decays/minute
Explanation:
From;
0.693/t1/2 = 2.303/t log (Ao/A)
Where;
t1/2=half-life of C-14= 5670 years
t= time taken to decay
Ao= activity of a living sample
A= activity of the sample under study
a)
0.693/5670 = 2.303/1000 log(162.5/A)
1.22×10^-4 = 2.303×10^-3 log(162.5/A)
1.22×10^-4/2.303×10^-3 = log(162.5/A)
0.53 × 10^-1 = log(162.5/A)
5.3 × 10^-2 = log(162.5/A)
162.5/A = Antilog (5.3 × 10^-2 )
A= 162.5/1.13
A= 143.8 decays/minute
b)
0.693/5670 = 2.303/50000 log(162.5/A)
1.22×10^-4 = 4.61×10^-5 log(162.5/A)
1.22×10^-4/4.61×10^-5 = log(162.5/A)
0.26 × 10^1 = log(162.5/A)
2.6= log(162.5/A)
162.5/A = Antilog (2.6 )
A= 162.5/398.1
A= 0.41 decays/minute