1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
9

Is there ever a situation where an ant will have more momentum than an elephant? Explain why or why not?

Physics
1 answer:
Mariulka [41]3 years ago
6 0

Answer:

Yes

Explanation:

The momentum of an object is given by:

p=mv

where

m is the mass of the object

v is the velocity of the object

We know that an elephant has a mass much larger than the mass of an ant. However, we see that the momentum of the animal also depends on its velocity.

If the elephant is at rest, its velocity is zero:

v = 0

so its momentum is also zero:

p = 0

And therefore, an ant which is moving (so, non-zero speed) can have more momentum than an elephant, if the elephant is at rest.

You might be interested in
Suppose a straight 1.00-mm-diameter copper wire could just "float" horizontally in air because of the force due to the Earth’s m
insens350 [35]

To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

F_{mag}= BIL

Where,

B = Magnetic Field

I = Current

L = Length

<em>Note: F_{mag}  is a direct adaptation of the vector relation F=q \times V \times B</em>

From Newton's second law we know that the relation of Strength and weight is determined as

F_g = mg

Where,

m = Mass

g = Gravitational Acceleration

For there to be balance the two forces must be equal therefore

F_{mag} = F_g

BIL = mg

Our values are given as,

Diameter (d) = 1.0mm = 1*10^{-3}m

Radius (r) = \frac{d}{2} = \frac{1*10^{-3}}{2} = 0.5*10^{-3}m

Magnetic Field (B) = 5.0*10^{-5} T

From the relationship of density another way of expressing mass would be

\rho = \frac{m}{V} \rightarrow m = \rho V

At the same time the volume ratio for a cylinder (the shape of the wire) would be

V = \pi r^2 L \rightarrow L =Length, r= Radius

Replacing this two expression at our first equation we have that:

BIL = mg

BIL = ( \rho V)g

BIL = ( \rho \pi r^2 L)g

Re-arrange to find I

I = \frac{( \rho \pi r^2 L)g}{BL}

I = \frac{( \rho \pi r^2 )g}{B}

We have for definition that the Density of copper is 8.9*10^3 Kg/m^3, gravity acceleration is 9.8m/s^2 and the values of magnetic field (B) and the radius were previously given, then:

I = \frac{( (8.9*10^3 ) \pi (0.5*10^{-3})^2 )(9.8)}{5.0*10^{-5}}

I = 1370.05A

The current is too high to be transported which would make the case not feasible.

8 0
3 years ago
After a collision between two different massed objects; the larger objects accelerate at a faster rate than the smaller object?
Nitella [24]

Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true

Explanation:

Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.

6 0
3 years ago
A 120-kg roller coaster cart is being tested on a new track, and a crash-test dummy is loaded into itThe roller coaster starts f
Black_prince [1.1K]

Answer:

a) variation of the energy is equal to the work of the friction force

b) W = Em_{f} -Em₀ ,  c) he conservation of mechanical energy

Explanation:

a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.

 Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.

b) the calluses that he would use are to hinder the worker's friction force and energy

          W = Em_{f} -Em₀

          N d = ½ m v² - m g (y₂-y₁)

          y₂-y₁ = 35 -10 = 25m

c) if there is no friction, the physical principle is the conservation of mechanical energy

 If there is friction, the principle is that the non-conservative work is equal to the variation of the energy

7 0
3 years ago
Your friend, who is in a field 100 meters away from you, kicks a ball towards you with an initial velocity of 16 m/s. Assuming t
LekaFEV [45]

Answer:

Time, t = 5.355 seconds

Explanation:

Given the following data;

Distance = 100 m

Initial velocity = 16 m/s

Deceleration = 1 m/s²

To find the time, we would use the second equation of motion;

But since the ball is decelerating, it's acceleration would be negative.

S = ut + ½at²

Where;

S represents the displacement or height measured in meters.

u represents the initial velocity measured in meters per seconds.

t represents the time measured in seconds.

a represents acceleration measured in meters per seconds square.

Substituting into the equation, we have;

100 = 16t - 0.5t²

200 = 32t - t²

t² + 32t - 200 = 0

Solving the quadratic equation using the quadratic formula;

The quadratic equation formula is;

x = \frac {-b \; \pm \sqrt {b^{2} - 4ac}}{2a}

Substituting into the equation, we have;

x = \frac {-32 \; \pm \sqrt {32^{2} - 4*1*(-200)}}{2*1}

x = \frac {-32\pm \sqrt {1024 - (-800)}}{2}

x = \frac {-32 \pm \sqrt {1024 + 800}}{2}

x = \frac {-32 \pm \sqrt {1824}}{2}

x = \frac {-32 \pm 42.71}{2}

x_{1} = \frac {-32 + 42.71}{2}

x_{1} = \frac {10.71}{2}

x1 = 5.355

We do not need the negative value of x, so we proceed.

Therefore, time = 5.355 seconds

3 0
3 years ago
Is it okay to keep an albino gecko
arlik [135]

Answer:

Yes

Explanation:

5 0
2 years ago
Other questions:
  • Approximately how far is the sun from the center of the milky way galaxy?
    12·2 answers
  • What is the rotational kinetic energy of the Earth about the Sun? Assume the earth is a uniform sphere, mass of the Earth is 5.9
    7·1 answer
  • You have two identical pure silver ingots. You place one of them in a glass of water and observe it to sink to the bottom. You p
    6·1 answer
  • What is the definition of density?​
    8·1 answer
  • Acceleration = change of velocity divided by time interval = Δv/Δt.
    7·1 answer
  • What is the most common consumed Halloween candy in the us after chocolate
    14·1 answer
  • What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic field
    14·1 answer
  • A long line of charge with uniform linear charge density λ1 is located on the x-axis and another long line of charge with unifor
    10·1 answer
  • The total length of the wire of potentiometer is 10m. A potential gradient of 0.0015 V/cm is obtained when a steady current is p
    14·1 answer
  • A 1200 kg sports car accelerates from 0 m/s to 30 m/s in 10 s. What is the average power of the engine?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!