Using the given equation you get:
E = 1.99x10^-25 / 9.0x10^-6
Divide 1.99 by 9.0: 1.99/9.0 = 0.22
For the scientific notation, when dividing subtract the two exponents:
25 -6 = 19
So you now have 0.22 x 10^-19
Now you need to change the 0.22 to be in scientific notation form:
2.2 x 10^-20
The answer is B.
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Answer:
The temperature of air in the tire is 55.57 ºC
Explanation:
Please look at the solution in the attached Word file