Given the mass of R-134a m = 300kg; Volume of the container V = 9 cu. meter; Temperature of R-134a T = 10 degrees Celsius;
Formula of specific volume : v = V / m = 9 / 300 = 0.03 cu. m / kg.
At T = 10 degrees Celsius from saturated R-134a tables, vf = 0.0007930 cu. m /kg; vg = 0.049403 cu. m/kg. We know v = vf + x (vg - vf), so 0.03 = 0.0007930 + x (0.049403 - 0.0007930), which makes x = 0.601.
Specific enthalpy of R-134a in the container is h = hf + x*hfg = 65.43 + (0.601 * 190.73). Answer is 180.0587 kJ/kg
Answer:
its C! I just finished the test on edg :)
Answer:
A) i) Dynamic error ≈ 3.1%
ii) phase shift ≈ -12°
B) 79971.89 rad/s
Explanation:
Given data :
Damping ratio = 0.5
natural frequency = 18,000 Hz
<u>a) Calculate the dynamic error and phase shift in accelerometer output at an impart vibration of 4500 Hz</u>
i) Dynamic error
This can be calculated using magnitude ratio formula attached below is the solution
dynamic error ≈ 3.1%
ii) phase shift
This phase shift can be calculated using frequency dependent phase shift formula
phase shift ≈ -12°
<u>B) Determine resonance frequency </u>
Wr = 2
( 18000
) = 79971.89 rad/s
C) The maximum magnitude ratio that the system can achieve