<u>Gay Lussac’s law</u> state that the pressure and absolute temperature of a fixed quantity of a gas are directly proportional under constant volume conditions.
<h2>Further Explanation
</h2><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Boyles’s law
</h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
<h3>Charles’s law
</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Gay-Lussac’s law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:
</h3>
- Gay-Lussac’s law: brainly.com/question/2644981
- Charles’s law: brainly.com/question/5016068
- Boyles’s law: brainly.com/question/5016068
- Dalton’s law: brainly.com/question/6491675
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Gay-Lussac’s law
Answer:

Explanation:
Given that the airplane starts from the rest (this is initial velocity equals to zero) and accelerates at a constant rate, position can be described like this:
where x is the position, t is the time a is the acceleration and
is initial velocity. In this way acceleration can be found.
.
Now we are able to found velocity at any time with the formula: 
Answer:
it comes from your knowledge and the information you have to get the reason why that is the answer so you are putting together things that you already know what the new information you have