False
Voltage in an electrochemical cell is in indication of equilibrium, higher will be the non-equilibrium, higher will be the voltage, or we can say at equilibrium voltage tends to 0.
Voltage in an electrical cell is the result of flow of electron, which flow due to difference in charge of the cells, higher the charge difference higher will be the voltage, as the equilibrium between the chemical cells established the flow of electron will stop, and the voltage of the cell tend to 0.
From ideal gas law, PV=nRT
where P is the pressure, V is the volume of the container, n is number of moles, R is the gas constant and T is the temperature.
Hence, 
T= 110.65 k
Kinetic Energy = 
K.E= 
<h3>What is a kinetic energy? </h3>
The energy an object has as a result of motion is known as kinetic energy.
A force must be applied to an object in order to accelerate it. We must put in effort in order to apply a force. After the work is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transferred and is dependent on the mass and speed attained.
Kinetic energy can be converted into other types of energy and transported between objects. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's initial kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the collision.
To know more about kinetic energy, visit:
brainly.com/question/22174271
#SPJ4
Answer with Explanation:
We are given that
Resistance of solenoid,R=4.3 ohm
Magnetic field,B=
Current,I=4.6 A
Diameter of wire,d=0.5 mm=
Radius of wire,r=

Radius of solenoid,r'=1 cm=

Resistivity of copper,
We know that

Where 
Using the formula


Number of turns of wire=
Number of turns of wire=
Hence, the number of turns of the solenoid,N=799
Magnetic field in solenoid,B=






Length of solenoid=12.5 cm
1m=100 cm
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.