Multiply the first equation by -1
-3x-y=-4
2x+y=5
Add them up
-x=1
So x=-1
And y=7
So the first option is correct
Answer:
54
Step-by-step explanation:
To solve problems like this, always recall the "Two-Tangent theorem", which states that two tangents of a circle are congruent if they meet at an external point outside the circle.
The perimeter of the given triangle = IK + KM + MI
IK = IJ + JK = 13
KM = KL + LM = ?
MI = MN + NI ?
Let's find the length of each tangents.
NI = IJ = 5 (tangents from external point I)
JK = IK - IJ = 13 - 5 = 8
JK = KL = 8 (Tangents from external point K)
LM = MN = 14 (Tangents from external point M)
Thus,
IK = IJ + JK = 5 + 8 = 13
KM = KL + LM = 8 + 14 = 22
MI = MN + NI = 14 + 5 = 19
Perimeter = IK + KM + MI = 13 + 22 + 19 = 54
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>
Answer:
319 miles.
Step-by-step explanation:
Answer:
quotient
Step-by-step explanation:
yup it just is