The first step that Enrique must take in order to calculate the tangential speed of the satellite is to convert the period from days to seconds.
We know that the SI unit of speed is meter per second and now, we with to obtain the tangential speed of the satellite.
Since the period is given in days, the first step is to convert the period from days to seconds.
Learn more: brainly.com/question/17638582
Answer:
1.2cm
Explanation:
V=(2ev/m)^1/2
=(2*1.6*10^19 x2500/ 1.67*10^27)^1/2
=6.2x10^5m/s
Radius of resulting path= MV/qB
= 1.67*10^-27x6.92*10^6/1.6*10^-16 x0.6
=0.012m
=1.2cm
<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.
Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns