Answer:
Bridget is transferring energy to the bicycle.
The bicycle is using energy to do work.
Bridget has kinetic energy.
The bicycle has potential energy.
The bicycle has mechanical energy.
Explanation:
Energy can be transformed from one form to another. A body possess kinetic energy due to virtue of its motion. Potential energy is possessed by a body due to virtue of its position. mechanical energy is the sum of potential energy and kinetic energy. Nuclear energy is produced when atoms split or two atoms fuse together.
When Bridget is riding bicycle up a hill. Energy involved is both kinetic energy due to motion and potential energy due to gain in height up the hill. Bridget is pedaling, hence he is transferring energy to the bicycle. Bridget is in motion along with the bicycle. Hence, both Bridget and Bicycle have kinetic energy and potential energy. We can say both have mechanical energy. Thus correct options are:
Bridget is transferring energy to the bicycle.
The bicycle is using energy to do work.
Bridget has kinetic energy.
The bicycle has potential energy.
The bicycle has mechanical energy.
Answer:
The distance is 1.69 m.
Explanation:
Given that,
First charge 
Second charge 
Distance = 3.25 m
We need to calculate the distance
Using formula of electric field





Put the value into the formula





Hence, The distance is 1.69 m.
If I had to go with any of those answers, It would be A maybe D, But im not too sure on how to decide between them. Because Einstein mentioned the sun in his theory which has a very large mass <span> 1.989 x 10 with a exponent of 30 to be exact. Hope this helped though.</span>
Galileo Galilei was the first scientist to perform experiments in order to test his ideas. He was also the first astronomer to systematically observe the skies with a telescope.
:)
First we have to find out the gravity on that planet. We use Newton second equation of motion. It is given as,
s = ut +(gt^2)/2
Distance s = 25m
Time t = 5 s
Velocity u = 0
By putting these values,
25 = 1/2.g.(5)²
g = 2
So the gravity on that planet is 2. Lets find out the weight of the astronaut.
Mass of the astronaut on earth m = 80 kg
Weight of astronaut on earth W = mg = (80)(9.8) = 784 N
Weight of astronaut on earth like planet = (80)(2) = 160 N
x = 160N