Answer:
The distance is
Explanation:
From the question we are told that
The smallest shift is 
Generally a grid unit is
of an arcsec
This implies that 0.2 grid unit is 
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

substituting values


Note 
So
Answer:
f = 7.97 x 10⁶ Hz = 7.97 MHz
Explanation:
The speed of a wave is given by the following formula:

where,
v = speed of the ultrasound wave through human tissue = 1540 m/s
f = frequency of ultrasound wave required = ?
λ = wavelength of ultrasound waves = smallest detail required = 0.193 mm
λ = 0.193 mm = 1.93 x 10⁻⁴ m
Therefore,
<u>f = 7.97 x 10⁶ Hz = 7.97 MHz</u>
Answer:
The charge in each ball will be 3 * 10^-12 C
Explanation:
(Assuming the correct charge of the second ball is 8 * 10^-12)
When the balls are brought in contact, all the charges are split evenly among then.
So first we need to find the total charge combined:
(-3 * 10^-12) + (8 * 10^-12) + (4 * 10^-12) = 9 * 10^-12 C
Then, when the balls are separated, each ball will have one third of the total charge, so in the end they will have the same charge:
(9 * 10^-12) / 3 = 3 * 10^-12 C
So the charge in each ball will be 3 * 10^-12 C
Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.