As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
You would do 82.75 divided by 125 cm3 and get 0.6620 g/cm3 because to find density you mist divide mass and volume and grams is always mass and cm3 or mL is always volume. hope i helped!
It Is Called The Parent Nuclide
Answer:
solid
Explanation:
Melting and boiling points of Group 7 elements State at room temperature Room temperature is usually taken as being 25°C. At this temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine and astatine are solids. There is therefore a trend in state from gas to liquid to solid as you go down the group.