Answer: option D - The total number of nucleons changes.
Explanation:
Nuclear Reaction is best described as a process such as the fission of an atomic nucleus, or the fusion of one or more atomic nuclei and / or subatomic particles in which the NUMBER of PROTONS and / or NEUTRONS in a nucleus CHANGES; the reaction products may contain a different element or a different isotope of the same element.
Note that the NUCLEONS refers to ONE of the subatomic particles of the atomic nucleus, i.e. a PROTON or a NEUTRON.
So, in a Nuclear reaction, the total number of nucleons changes.
Answer:
See explanation.
Explanation:
For the ideal gas law (PV = nRT), we can notice that when the temperatures increases, the pressure or the volume must increase.
For the container with constant volume, the pressure will increase. Because density is mass/volume, in this container the density will not change.
For the other container, the pressure must be the same as the external, so it will not change, then the volume must increase. When the volume increases, the density decreases (density = mass/volume), so the pressure doesn't change and the density decreases.
Answer:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Explanation:
Answer:
e. 18
Explanation:
A neutral P atom has an atomic number of 15, which means there are 15 protons in the atom. In order to be neutral, the P atom must also have 15 electrons.
The P³⁻ anion has 3 electrons more than the neutral P atom since it has a charge of -3.
Thus, the total number of electrons are 15 + 3 = 18 electrons.