Answer:
4.88 g / cm³
Explanation:
Density of a substance is given by the mass of the substance divided by the volume of the substance .
Hence , d = m / V
V = volume
m = mass ,
d = density ,
From the question ,
The mass of the metal = 24.54 g
The volume of the metal = 5.02 mL
Hence , by using the above formula ,and putting the corresponding values , the density is calculated as -
d = m / V
d = 24.54 g / 5.02 mL
d = 4.88 g /mL
The unit 1mL = 1 cm³
Hence ,
d = 4.88 g / cm³
Answer:

Explanation:
Hello!
In this case for the solution you are given, we first use the mass to compute the moles of CuNO3:

Next, knowing that the molarity has units of moles over liters, we can solve for volume as follows:

By plugging in the moles and molarity, we obtain:

Which in mL is:

Best regards!
Answer:
The molecular formula of estradiol is:
.
Explanation:
Molar mass of of estradiol = M= 272.37 g/mol
Let the molecular formula of estradiol be 
Percentage of an element in a compound:

Percentage of carbon in estradiol :

x = 18.0
Percentage of hydrogen in estradiol :

y = 24.2 ≈ 24
Percentage of oxygen in estradiol :

z = 2
The molecular formula of estradiol is: 
Answer:

Explanation:
Hello!
In this case, according to the Kirchhoff's law for the enthalpy change, it is possible to compute the heat of vaporization at 300.2 K by considering the following thermodynamic route:

Whereas the first term stands for the effect of taking the liquid from 298.15 K to 373.15 K, the second term stands for the standard enthalpy of vaporization and the last term that of the vapor from the boiling point to 300.2 K; thus we plug in to obtain:

Best regards!