Answer:
Explanation:
Ketcher 01232019462D 1 1.00000 0.00000 0 5 4 0 0 0 999 V2000 -0.0330 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 2.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 3.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 1.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 3 1 0 0 0 2 4 1 0 0 0 3 5 1 0 0 0 M END
Extensive properties, as volume and mass, depend on the amount of material. So, you can have a sample of gold and a sample of copper with the same volume as long as you have different amount of each one.
On the other hand, intensive properties do not depend on the amound of material but on the chemical constitution of the material. Density is an intensive property, so gold and copper have different densities. That is why you can use intensive properties to characterize different materials.
The fridge part can, just not the freezer, I think.
Answer:
A. m C5H12 = 108.23 g
B. m F2 = 547.142 g
C. m Ca(CN)2 = 71.85 g
Explanation:
- mass (m) = mol (n) × molecular weigth (Mw)
∴ Mw C5H12 = ((12.011)(5)) + ((1.008)(12)) = 72.151 g/mol C5H12
∴ Mw F2 = (18.998)(2) = 37.996 g/mol F2
∴ Mw = Ca(CN)2 = 40.078+((12.011+14.007)(2)) = 92.114 g/mol Ca(CN)2
A. m C5H12 = ( 1.50 mol)×(72.151 g/mol) = 108.23 g C5H12
B. m F2 = (14.4 mol)×(37.996 g/mol) = 547.142 g F2
C. m Ca(CN)2 = (0.780 mol)×(92.114 g/mol) = 71.85 g Ca(CN)2
Answer:
m = 1.5 gram
Explanation:
Given that,
Density of protein gelatin, d = 3 g/L
The volume of protein gelatin, V = 0.5 L
We need to find the mass of the protein gelatin. The density of an object is given by :
d = m/V
Where
m is mass

So, the required mass is 1.5 gram.