Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Answer : The Lewis-dot structure of
is shown below.
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, chlorine has '7' valence electron and oxygen has '6' valence electrons.
Therefore, the total number of valence electrons in
= 1(4) + 2(7) + 1(6) = 24
According to Lewis-dot structure, there are 8 number of bonding electrons and 16 number of non-bonding electrons.
Answer:
Lavoisier; Newlands; Moseley
Explanation:
In 1789, Antoine Lavoisier grouped the elements into gases, nonmetals, metals, and earths.
In 1865, John Newlands developed the Law of Octaves. He stated that "any given element will exhibit analogous behaviour to the eighth element following it in the table."
In 1914, Henry Moseley found a correlation between the X-ray wavelength of an element and its atomic number. He was then able to restructure the periodic table according to atomic numbers.
The answer is C. Since aluminum reacts with chloride displacing only Copper.