U can use PV=nRT
where n=mass in grams/ molar mass
temp will be converted into kelvin by adding 273k
the value of R = 0.0821
try it by yourself :)
Answer:
18 KJ
Explanation:
Data Given:
mass of Lead (m) = 21 g
Heat taken for vaporization (Q) = ?
Solution:
This problem is related to phase change and latent heat of vaporization.
Latent heat of vaporization is the amount of heat taken to convert one mole of substance at its boiling point to its vapor.
So, Latent heat of vaporization of lead has a constant value
Latent heat of vaporization of lead = 177.7 KJ/mol
Formula used
Q = m x Lv. . . . . (1)
where
Lv = specific latent heat of vaporization
here the value for latent heat of vaporization is for mole so instead of mass we will use moles in formula.
So,
Q = no. of mol x Lv. . . . . (2)
first find no. of moles for 21 g of lead
no. of moles = mass in grams / molar mass . . . . . . (3)
molar mass of lead (Pb) = 207 g/mol
put values in equation 3
no. of moles = 21g / 207 g/mol
no. of moles = 0.101 mol
so,
number of moles of lead (Pb) = 0.101 mol
Put values in the eq.2
Q = 0.101 mol x 177.7 KJ/mol
Q = 18 kJ
So, 18KJ of heat is taken to vaporize 21 g of lead (Pb)
Answer:
3s and 3p
Explanation:
From the question given above, the following data were obtained:
Electronic configuration =>
1s² 2s²2p⁶ 3s²3p⁴
Location of valence electron =?
From the electronic configuration given above, we can see clearly that the atom has three (3) shells.
Valence electron(s) are located at the outer most shell of an atom.
The outer most shell of the atom above is 3s and 3p.
Therefore, 3s and 3p will contain the valence electron(s)
Answer:
The flip side, of course, is that a strongly basic solution can have 100,000,000,000,000 times more hydroxide ions than a strongly acidic solution.
Explanation:
Alkaline earth metals are metals of group two. They are divalent metals and they have a highly negative reduction potential hence the metals are mostly extracted by electrolysis.
They are highly reactive metals. They react with water but do so less readily than alkali earth metals.
Owing to their high reactivity, they are seldom found free in nature. They always occur in combined state with other highly reactive nonmetals.