Answer: Gravitational force
Explanation:
A non contact force can be described as a force applied to an object by another body that is not in direct contact with it.
For example, an object thrown upwards will return back due to the force of gravity acting on it. So, it means Gravitational force is acting on the body without necessarily being in contact with that body.
A = 59.35cm
B = 196.56g
C = 74.65g
<u>Explanation:</u>
We know,

and L = x+y
1.
Total length, L = 100cm
Weight of Beam, W = 71.8g
Center of mass, x = 49.2cm
Added weight, F = 240g
Position weight placed from fulcrum, y = ?

Therefore, position weight placed from fulcrum is 59.35cm
2.
Total length, L = 100cm
Center of mass, x = 47.8 cm
Added weight, F = 180g
Position weight placed from fulcrum, y = 12.4cm
Weight of Beam, W = ?

Therefore, weight of the beam is 196.56g
3.
Total length, L = 100cm
Center of mass, x = 50.8 cm
Position weight placed from fulcrum, y = 9.8cm
Weight of Beam, W = 72.3g
Added weight, F = ?

Therefore, Added weight F is 74.65g
A = 59.35cm
B = 196.56g
C = 74.65g
Answer:
The point on the rim
Explanation:
All the points on the disk travels at the same angular speed
, since they cover the same angular displacement in the same time. Instead, the tangential speed of a point on the disk is given by

where
is the angular speed
r is the distance of the point from the centre of the disk
As we can see, the tangential speed is directly proportional to the distance from the centre: so the point on the rim, having a larger r than the point halway between the rim and the axis, will have a larger tangential speed, and therefore will travel a greater distance in a given time.
Answer:
Explanation:
Since the compass uses a magnetic field, if anything else magnetic is near it, the compass will start acting up. Making it unreliable so keep magnets away!
To start with solving this
problem, let us assume a launch angle of 45 degrees since that gives out the
maximum range for given initial speed. Also assuming that it was launched at
ground level since no initial height was given. Using g = 9.8 m/s^2, the
initial velocity is calculated using the formula:
(v sinθ)^2 = (v0 sinθ)^2
– 2 g d
where v is final
velocity = 0 at the peak, v0 is the initial velocity, d is distance = 11 m
Rearranging to find for
v0: <span>
v0 = sqrt (d * g/ sin(2 θ)) </span>
<span>v0 = 10.383 m/s</span>