1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
8

Why do some nucleus release electrons?

Physics
1 answer:
fredd [130]3 years ago
5 0

Answer:

Electrons are not little balls that can fall into the nucleus under electrostatic attraction

Explanation:

You might be interested in
An engineer has the task of producing an aluminum alloy with a density of 3.0 grams per cubic centimeter. She comes up with the
pochemuha

Answer:

The best option is for the following option m = 15 [g] and V = 5 [cm³]

Explanation:

We have that the density of a body is defined as the ratio of mass to volume.

Ro =m/V

where:

Ro = density = 3 [g/cm³]

Now we must determine the densities with each of the given values.

<u>For m = 7 [g] and V = 2.3 [cm³]</u>

Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]

<u>For m = 10 [g] and V = 7 [cm³]</u>

<u />Ro=10/7\\Ro=1.42[g/cm^{3} ]\\<u />

<u>For m = 15 [g] and V = 5 [cm³]</u>

<u />Ro=15/5\\Ro=3[g/cm^{3} ]\\<u />

<u>For m = 21 [g] and V = 8 [cm³]</u>

<u />Ro=21/8\\Ro=2.625[g/cm^{3} ]\\<u />

5 0
3 years ago
In a chart the independent variable goes on the ___________. Question 5 options: left right middle
I am Lyosha [343]
The answer i think is left

6 0
3 years ago
Read 2 more answers
A particle moves along the curve below. y = sqrt(1 + x^3) As it reaches the point (2, 3), the y-coordinate is increasing at a ra
blagie [28]

Answer:7 cm/s

Explanation:

Given

Particle move along curve

y=\sqrt{1+x^3}

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s

Differentiating y w.r.t time

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3x^2}{2\sqrt{1+x^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

Now at (2,3)

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3\cdot 2^2}{2\sqrt{1+2^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

14=\frac{3\times 4}{2\times \sqrt{9}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

\frac{\mathrm{d} x}{\mathrm{d} t}=7 cm/s

7 0
3 years ago
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
4 years ago
the resistance of a wire of length 80cm and of uniform area of cross-section 0.025cmsq., is found to be 1.50 ohm. Calculate spec
vivado [14]
Specific\ resistance\ =resistivity\\&#10;From\ formula\ on \ resistance:\ R= \frac{pL}{A}\ p-resistivity,\ L-length,\\ A-area\ of\ cross\ section\\&#10;p= \frac{R*A}{L}= \frac{1,5Ohm*0,025*10^{-4}m^2 }{80* 10^{-2}m }=0,0003515625 Ohm*m
3 0
3 years ago
Other questions:
  • Two transverse waves travel along the same taut string inopposite directions. the waves are described by following equations use
    7·1 answer
  • One of the leading causes of permanent damage leading to hearing impairment is _____.
    6·2 answers
  • Rocks that fall out of the sky and land on Earth are called _____________. Question 7 options: A.meteorites B.asteroids C.comets
    11·2 answers
  • Why is rust formed on iron
    11·1 answer
  • Explain briefly where the energy come from when a liquid Rises against Gravity in a capillary tube​
    9·1 answer
  • A man weighing 490 N on earth weighs only 81.7 N on the moon. His mass on the moon is ____ kg. (Use g=9.8 m/s²)
    15·1 answer
  • A lightbulb has a power rating of 6.75 W and draws a current of 0.75 A when connected to a battery.
    14·1 answer
  • A block of mass M is attached to a spring of negligible mass and can slide on a horizontal surface along the x-direction, as sho
    14·1 answer
  • A person uses a match to light charcoal in a grill. Which statement describes
    13·1 answer
  • Ahmed fills a basket with shopping weighing 10 kg. How much work is being done on the shopping basket when he lifts it verticall
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!