Answer:
Explanation:
Given
Temperature of the gas is increased from 100 to 200
Also we know that average kinetic energy of the molecules is

Where
R=Gas constant
=Avogadro's number
T=Temperature in kelvin

So kinetic energy increases by


How can I help? What’s the question?
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:
Crust, Upper mantle, mantle, outer core, inner core
Explanation:
The Earth's layers have been clasified in 5 according to the materials that conform them, theri physical properties, strengths and also their state of matter. We all know how the outer layer of the Earth looks like, but if we start to dig a huge hole we are going to see different types por materials due to a change in pressure, temperature, and other factors. At the very center of the Earth there's what's called "core". The core is liquid and at extremely high temperatures. This is because of the enormous amount of pressure the rest of the Earth is putting it under. So, if we list the different layers of the Earth according to the materials they are made of, from the Earth's surface to the core, the answer is:
1) Crust (surface)
2) Upper Mantle
3) Mantle
4) Outer core
5) Inner core
In some books you may find a layer called Lithosphere. Tis layer consists not only of the crust, but also it contains the transition zone between the upper mantle and the crust.
Deffinitly oxygen cause everyone breathes and yah.