1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
12

In a football game, a defensive lineman exerts a force upon an offensive lineman, causing the offensive lineman to be accelerate

d backward at 2 m/s2. If the offensive lineman's mass were doubled, how much force would the defensive lineman have to apply to accelerate the offensive lineman 2 m/s2 backward? A. half as much B. twice as much C. four times as much D. the same amount
Physics
2 answers:
Grace [21]3 years ago
7 0

the answer is B.twice as much

skelet666 [1.2K]3 years ago
7 0

Answer:

The answer is B (twice as much)

Explanation:

The magnitude, or amount, of an object's acceleration is directly proportional to the magnitude of the force exerted upon it and inversely proportional to its own mass.

In this case, if the offensive lineman's mass were doubled, then the force exerted upon him would also have to be doubled to produce the same acceleration (2 m/s2).

You might be interested in
A parallel-plate capacitor with plates of area 360 cm2 is charged to a potential difference V and is then disconnected from the
Softa [21]

Answer:

Q=3.9825\times 10^{-9} C

Explanation:

We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.

1 m =100 cm

Surface area =S=\frac{360}{10000}=0.036 m^2

\Delta d=0.8 cm=0.008 m

\Delta V=100 V

We have to find the charge Q on the positive plates of the capacitor.

V=Initial voltage between plates

d=Initial distance between plates

Initial Capacitance of capacitor

C=\frac{\epsilon_0 S}{d}

Capacitance of capacitor after moving plates

C_1=\frac{\epsilon_0 S}{(d+\Delta d)}

V=\frac{Q}{C}

Potential difference between plates after moving

V=\frac{Q}{C_1}

V+\Delta V=\frac{Q}{C_1}

\frac{Qd}{\epsilon_0S}+100=\frac{Q(d+\Delta d)}{\epsilon_0S}

\frac{Q(d+\Delta d)}{\epsilon_0 S}-\frac{Qd}{\epsilon_0S}=100

\frac{Q\Delta d}{\epsilon_0 S}=100

\epsilon_0=8.85\times 10^{-12}

Q=\frac{100\times 8.85\times 10^{-12}\times 0.036}{0.008}

Q=3.9825\times 10^{-9} C

Hence, the charge on positive plate of capacitor=Q=3.9825\times 10^{-9} C

6 0
3 years ago
Which of the following is the best definition of lifestyle activity?
Bezzdna [24]
It d bro it’s d bro it’s d
3 0
3 years ago
Can someone please help me out?
maria [59]

Explanation:

If you want to get speed, u have to divided distance over time

The lowest speed will lose

8 0
3 years ago
Read 2 more answers
Two 51 g blocks are held 30 cm above a table. As shown in the figure, one of them is just touching a 30-long spring. The blocks
vivado [14]

The concept of this question can be well understood by listing out the parameters given.

  • The mass of the block = 51 g = 51 × 10⁻³ kg
  • The distance of the block from the table = 30 cm
  • Length of the spring = 30 cm

The purpose is to determine the spring constant.

Let us assume that the two blocks are Block A and Block B.

At point A on block A, the initial velocity on the block is zero

i.e. u = 0

We want to determine the time it requires for Block A to reach the table. The can be achieved by using the second equation of motion which can be expressed by using the formula.

\mathsf{S = ut + \dfrac{1}{2}gt^2}

From the above formula,

The distance (S) = 30 cm; we need to convert the unit to meter (m).

  • Since 1 cm = 0.01 m
  • Then, 30cm = 0.3 m

The acceleration (g) due to gravity = 9.8 m/s²

∴

inputting the values into the equation above, we have;

\mathsf{0.3 = (0)t + \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 = \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 =4.9*(t^2)}

By dividing both sides by 4.9, we have:

\mathsf{t^2 = \dfrac{0.3}{4.9}}

\mathsf{t^2 = 0.0612}

\mathsf{t = \sqrt{0.0612}}

\mathsf{t =0.247  \ seconds}

However, block B comes to an instantaneous rest on point C. This is achieved by the dropping of the block on the spring. During this process, the spring is compressed and it bounces back to oscillate in that manner. The required time needed to get to this point C is half the period, this will eventually lead to the bouncing back of the block with another half of the period, thereby completing a movement of one period.

By applying the equation of the time period of a simple harmonic motion.

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

where the relation between time (t) and period (T) is:

\mathsf{t = \dfrac{T}{2}}

T = 2t

T = 2(0.247)

T = 0.494 seconds

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

By making the spring constant k the subject of the formula:

\mathsf{\dfrac{T}{2 \pi } = \sqrt{ \dfrac{m}{k}}}

\Big(\dfrac{T}{2 \pi }\Big)^2 = { \dfrac{m}{k}

\dfrac{T^2}{(2 \pi)^2 }= { \dfrac{m}{k}

\mathsf{ T^2 *k = 2 \pi^2*m} \\ \\  \mathsf{  k = \dfrac{2 \pi^2*m}{T^2}}

\mathsf{  k =\Big( \dfrac{(2 \pi)^2*(51 \times 10^{-3})}{(0.494)^2} \Big) N/m}

\mathbf{  k =8.25 \ N/m}

Therefore, we conclude that the spring constant as a result of instantaneous rest caused by the compression of the spring is 8.25 N/m.

Learn more about simple harmonic motion here:

brainly.com/question/17315536?referrer=searchResults

6 0
2 years ago
Please need help ASAP. Would really appreciate it.
a_sh-v [17]

if i renember correctly its b

3 0
3 years ago
Other questions:
  • The Young’s modulus of nickel is Y = 2 × 1011 N/m2 . Its molar mass is Mmolar = 0.059 kg and its density is rho = 8900 kg/m3 . G
    5·1 answer
  • The belief that race indicates certain traits and capacities and that one's own race is superior is called
    14·1 answer
  • What distance is covered by an airplane traveling at a velocity of 660 miles per hour in 3.5 hours?
    10·1 answer
  • A refigerator is designed to remove 3 kW from the cold space at -10C while it rejects heat to the kitchen at 25 C. The rate of t
    15·1 answer
  • The smallest possible part of an element that can still be identified as the element is called
    11·1 answer
  • A 2 cm tall object is placed 30cm in front of a concave mirror with focal length of 25 cm. What is the height of the image?
    7·1 answer
  • Write a paragraph of no less than five sentences explaining how Newton's First Law of Motion supports people's need to wear seat
    12·1 answer
  • Anna will wear a black dress when she attends her cousin’s wedding. Which color(s) does the dress absorb?
    11·2 answers
  • A mass of 2 kg traveling at 3 m/s undergoes a one-dimensional elastic collision with a group of four 1kg masses that are at rest
    15·1 answer
  • According to the Theory of Plate Tectonics, which of the following statements is correct?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!