^^^^^^^^^^^^^^^^^^^^^^^^^^^ is correct
Answer:
Explanation:
From the given information:
The speed of a synchronous motor in relation to its frequency can be represented with the formula:
where,
the electrical frequency is measured in Hz
the number of poles = P
For us to estimate the number of poles to have 50 Hz - 60 Hz Power, then we need to relate the frequencies of the above equation.
i.e
Thus, we can conclude that 10 poles synchronous motor is attached with 12 poles synchronous generator in order to convert 50 Hz to 60 Hz power.
Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P =
where
f = focal length
Thus
f =
f = = + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:
where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,
Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
Answer:
Image distance of apple=-6.7 cm
Magnification of apple=0.33
Explanation:
We are given that an apple is placed 20.cm in front of a diverging lens.
Object distance=u=-20 cm
Focal length=f=-10 cm
Because focal length of diverging lens is negative.
We have to find the image distance and magnification of the apple.
Lens formula
Substitute the values then we get
Image distance of apple=-6.7 cm
Magnification=m=
Magnification of apple=
Hence, the magnification of apple=0.33
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:
We must consider that it's launched from the ground () and from rest (), with an upwards acceleration that lasts a time t=9.7s.
We calculate then the height achieved in part 1:
And the velocity achieved in part 1:
We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 () and its initial velocity is the one achieved in part 1 (), now in free fall, which means with a downwards acceleration . For the data we have it's faster to use the formula , where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:
Then, to get , we do:
And we substitute the values: