When we balance the given equation
SF₆(g) + SO₃(g) → SO₂F₂(g)
We will get
SF₆(g) + 2SO₃(g) → 3SO₂F₂(g)
Solution:
Balancing the given equaation
SF₆(g) + SO₃(g) → SO₂F₂(g)
We have to balance the given number of O
SF₆(g) + 2SO₃(g) → 3SO₂F₂(g)
We get balanced equation
SF₆(g) + 2SO₃(g) → 3SO₂F₂(g)
The reaction quotient will be
Qc = [product] / [reactant]
Qc = [SO₂F₂(g)] / [SF₆(g) + SO₃(g)]
To learn more click the given link
brainly.com/question/16025432
#SPJ4
Answer: A.
Explanation:
Brownian motion is the random motion of a particle as a result of collisions with surrounding gaseous molecules. Diffusiophoresis is the movement of a group of particles induced by a concentration gradient. This movement always flows from areas of high concentration to areas of low concentration.
Example: The movement of pollen grains on still water. Motion of dust motes in a room (though largely influenced by air currents).
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.
Answer:
A) E° = 4.40 V
B) ΔG° = -8.49 × 10⁵ J
Explanation:
Let's consider the following redox reaction.
2 Li(s) +Cl₂(g) → 2 Li⁺(aq) + 2 Cl⁻(aq)
We can write the corresponding half-reactions.
Cathode (reduction): Cl₂(g) + 2 e⁻ → 2 Cl⁻(aq) E°red = 1.36 V
Anode (oxidation): 2 Li(s) → 2 Li⁺(aq) + 2 e⁻ E°red = -3.04
<em>A) Calculate the cell potential of this reaction under standard reaction conditions.</em>
The standard cell potential (E°) is the difference between the reduction potential of the cathode and the reduction potential of the anode.
E° = E°red, cat - E°red, an = 1.36 V - (-3.04 V) 4.40 V
<em>B) Calculate the free energy ΔG° of the reaction.</em>
We can calculate Gibbs free energy (ΔG°) using the following expression.
ΔG° = -n.F.E°
where,
n are the moles of electrons transferred
F is Faraday's constant
ΔG° = - 2 mol × (96468 J/V.mol) × 4.40 V = -8.49 × 10⁵ J