Answer:
100N
Explanation:
Newton's third law states that whenever an object exerts a force on a second object, it exerts a force of equal magnitude and direction but in the opposite direction on the first. It is often stated as follows: Each action always opposes an equal but opposite reaction.
The subject 1 of 100kg is making a force F, to move an object from 50Kg to 2m / s ^ 2. This Force the object of 50Kg will reflect it in the opposite direction by Newton's third law.
Once the parameter of the force that both are experiencing is clarified, Newton's second law is applied to their respective calculation.

That is the force the boy exert on the man during the shove.
(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,
Ce = 0.093 cal/g. °c
Q = m C ΔT
Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )
Q= 4×0.093 × 160
Q = 59.52 cal
I hope I helped you^_^
Answer:
Part a) 
Part b) 
Explanation:
Part a) what is its frequency, in rev/s
we have that
An old-fashioned LP record rotates at 33 1/3 RPM
so

Convert mixed number to an improper fraction

Remember that

Convert rev/min to rev/sec

Simplify

Part b) what is it period, in seconds
we know that
The period is the reciprocal of the frequency
therefore
the frequency is

Answer:
Visible Light
wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns
1 A unit = 10^-10 m
1 mμ = 10^-9 m
Answer:
F = 3.20 N
Explanation:
Given:
Work done by child = 80.2 j
Distance that the car moves = 25.0 m
We need to find the force acting on the car.
Solution:
Using work done formula as.

Where:
W = Work done by any object.
F = Force (push or pull)
d = distance that the object moves.
Substitute
in work done formula.


F = 3.20 N
Therefore, force acting on the car F = 3.20 N