Answer:
The answer ro this question is fear of failure
Answer:
The average acceleration of the ball during the collision with the wall is 
Explanation:
<u>Known Data</u>
We will asume initial speed has a negative direction,
, final speed has a positive direction,
,
and mass
.
<u>Initial momentum</u>

<u>final momentum</u>

<u>Impulse</u>

<u>Average Force</u>

<u>Average acceleration</u>
, so
.
Therefore, 
The whistling sound from the hearing aids represents that your hearing aids is working perfectly ad is known as the "feedback". So, the given statement is true.
Answer: Option A
<u>Explanation:</u>
It's often sounds irritating when a hearing aids of your grandpa or Grandma whistles. especially, when they put them out of their ears. Actually, this feedback sound from hearing aids occur when the sounds from the outer side bounces back to the microphone of the hearing aids.
The sound bounces back when it doesn't gets inside of your ear canal so that one can hear the sound through the hearing aid. When the sounds bounces back in the hearing aid, it get re-amplified and thus we hear the whistle sound which is known as the feedback of the device.
It's not always the feedback sound though. Sometimes the device whistles when it has some mechanical defect or when one hugs the other one or water gets inside and damaged the whole system.
Answer:
2 different types of precipitation is rain and snow.
Explanation:
The clouds will form... and the droplets that could be coming out is rain and snow.
I can't guess what -9.8 m/s means until you tell me where it came from,
or what 'm/s' means.
If perhaps it has something to do with the acceleration of gravity on Earth,
then the correct figure is ' -9.8 m/s² '. That means that any object that
has no other force acting on it except gravity has its speed changing by
9.8 meters per second every second. Since it's gravity doing the job,
then the object's speed is either increasing down, or decreasing up.
If an object has negative velocity, then it's moving in the direction opposite
to the direction that you decided to call positive when you started doing the
problem.
For example, if you decide that up is positive and down is negative, and
then somebody drops a stone from the top of a tall building, then the
gravitational force on the stone is negative (pointing down), its velocity
is negative (it's falling towards down), and its acceleration is negative (its
speed towards down is getting faster and faster). Everything is negative,
only because you decided that up is positive and down is negative. It's
nothing to be worried about.