Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis
Answer:
.737 v
Explanation:
Since they are in series....they all have the same current running through them.....find the total resistance to calculate the current:
R = 67 + 83 + 433 + 309 = 892 ohm
V/R = current = 7.92 / 892 = 8.87 mAmps
Now the voltage across ecah resistor is I R
for the second one 8.87 ma * 83 ohm = V = .737 V
"6.5 km/hr" is not a velocity. It's just a speed, so
we don't know what direction he's walking.
If he happens to be walking north, then it takes him
(12 km) / (6.5 km/hr) = 1.846... hours (rounded) .
If he's walking in any other direction, it takes him longer than that.
If the angle between north and the direction he's walking is
90 degrees or more, then he can never cover any northward
distance, no matter how long he walks.
Answer:
A) 1000 joules
Explanation:
In general work is given by the equation:
(1)
A) With
the displacement and
the force applied, because the force and the displacement are parallel (the crate is pushed horizontally)
is simply
, and because the path is a straight line and the force is constant work is:
(2),

B) The work-energy theorem says that the total work on a body is equal to the change on kinetic energy:
(3)
The total work on the crate is the work done by the push and plus the work of the friction
(4) , as (A) because forces are parallel to the displacement
(5) and
(6), the due friction always has negative sign because is opposite to the displacement, using (6), (5) and (4) on (3):
(3)
C) The energy is lost by friction, so the amount of energy turned into heat is the work the friction does:
(3)
Answer:
252J
Explanation:
Given parameters:
Distance = 72m
Force = 3.5N
Unknown:
Work done on the house = ?
Solution:
Work done is the force applied to move a body through a particular distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 3.5 x 72 = 252J