Thank you for the message my friend, yoU have a good day as well :)
Answer:
1. B
2. B
3. D
4. A
Hope this was correct! A lot of the answers are already in the article itself and the wording is just different. I suggest now that for information retainment, you read the article again with the correct points in mind and see if you can spot the points where the answers are stated!
Answer:
Explanation:
Calculate the volume of the lead

Now calculate the bouyant force acting on the lead


This force will act in upward direction
Gravitational force on the lead due to its mass will act in downward direction
Hence the difference of this two force

If V is the volume submerged in the water then bouyant force on the bobber is

Equate bouyant force with the tension and gravitational force

Now Total volume of bobble is

=
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Answer:
when the direction of the Current changes.
Explanation:
Electromagnet refers to an iron ore wrapped around with a coil of wire, in presence of electric current. As it acts like a magnet, when current is passed through it.
The north & south poles of magnetic fields produced by such magnet, change with direction of current passed through it.