<span>b. It ensures that measurements are taken from two points
that are very far apart.
Measurements taken six months apart are the farthest apart
that an astronomer can ever get ... they're on opposite sides
of the Earth's orbit !</span>
Answer:
Part 1)

Part 2)

Part 3)

Part 4)
Since torque on right side is more so here it will turn and slip over it
Explanation:
As we know that the block A is placed at distance
d = 50 cm from the hinge at 70 cm mark
So torque due to weight of A is given as

the block B is placed at distance
d = 30 cm from the hinge at 70 cm mark
So torque due to weight of B is given as

Now torque due to weight of the scale is given as


now torque on left side of scale is given as


Torque on right Side is given as

Since torque on right side is more so here it will turn and slip over it
Answer:

Explanation:
<u>Displacement Vector</u>
The displacement, as every vector, has a magnitude r and a direction angle θ measured from the positive x-axis.
If we know the x-y components of the displacement, the magnitude and angle can be calculated by the equations:


The coordinates of the given vector are x=-12 m, y=21 m, thus:


Since the vector lies in the second quadrant, we add 180° to find the correct direction:

Continue on the momentum it has. The probe will continue in the same direction it is moving because there are no forces to act against it. I think this is the answer you are looking for...?
Answer:
The answer is 80 m/s
Explanation:
You divide 240 by 3 since your force is 240N, then 3 is your mass, so divide and get 80