D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
Answer:
Though you have not gave the choices, I do believe it is “testing”
Explanation:
Here is the correct answer of the given question above. When a person steps forward out of a small boat onto a dock, the boat recoils backward in the water and this occurs because the total momentum of the system is conserved. Hope this helps.
I think it is either A or B. I’m mostly leaning towards B.
Answer:
Explanation:
A.
Given:
Vo = 21 m/s
Vf = 0 m/s
Using equation of Motion,
Vf^2 = Vo^2 - 2aS
S = (21^2)/2 × 9.8
= 22.5 m.
B.
Given:
S = 22.5 + 21 mm
= 22.521 m
Vo = 0 m/s
Using the equation of motion,
S = Vo × t + 1/2 × a × t^2
22.521 = 0 + 1/2 × 9.8 × t^2
t^2 = (2 × 22.521)/9.8
= 4.6
t = 2.14 s