Answer:
The outside of a neuron has more sodium ions while at resting state. When a electrical signal is going to pass through, the sodium channels open up first and the positive sodium ions rush inward making the inner side more positive. This is called action potential.
There is layer of fatty substances called as Myelin Sheath over the course of axons. It helps the electrical signal to be transmitted with a fast pace and efficiently over the course.
Answer:
The velocity of the skateboard is 0.774 m/s.
Explanation:
Given that,
The spring constant of the spring, k = 3086 N/m
The spring is stretched 18 cm or 0.18 m
Mass of the student, m = 100 kg
Potential energy of the spring,
To find,
The velocity of the car.
Solution,
It is a case of conservation of energy. The total energy of the system remains conserved. So,
v = 0.774 m/s
So, the velocity of the skateboard is 0.774 m/s.
Answer:
4.9 m/s²
Explanation:
Draw a free body diagram. There are two forces on the object:
Weight force mg pulling straight down,
and normal force N pushing perpendicular to the plane.
Sum the forces in the parallel direction.
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 30°)
a = 4.9 m/s²
The emf will be induced in anti-clockwise direction.
<u>Explanation</u>
Lenz's law tells us the direction us the direction that the current will flow. It states that the direction is always such that it will oppose the change in flux which produced it. This means that any magnetic field produced by an induced current will be in opposite direction to the change in the original field.
To find the direction of emf, Stretch the forefinger, middle finger and the thumb of the right hand mutually perpendicular to each other. If the force finger points in the direction of the magnetic field, the thumb gives the direction of the motion of the conductor then the middle finger gives the direction of the induced current.