Answer:

Explanation:
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
The gravitational force is always attractive.
In this problem, we have:
is the mass of the Earth
is the mass of the Moon
is the separation between the Earth and the Moon
Therefore, the gravitational force between them is

Answer:
C ) 1.53
Explanation:
The critical angle of a material is given by the formula

where
c is the critical angle
n is the refractive index
This formula is valid if the second medium is air (which is the case of the problem).
In this problem, we know the critical angle:

Therefore we can rearrange the equation to find the refractive index:

Answer:
GE = ME -
, which agrees with option C in your list.
Explanation:
The definition of Mechanical Energy (ME) of a system is the addition of the gravitational potential energy (GE) plus the kinetic energy (KE) of the system:
ME = GE + KE
Given that the KE is:
,
solving for GE in the formula above gives:
GE = ME - KE = ME -
, which agrees with option C
The answer is 0.981 J
E = m · g · h<span>
E - energy
m - mass
g - gravitational acceleration
h - height
We know:
E = ?
m = 0.10 kg
g = 9.81 m/s</span>²
h = 1 m
E = 0.10 kg * 9.81 m/s² * 1 m = 0.981 J