The molar mass of the unknown compound is calculated as follows
let the unknown gas be represented by letter Y
Rate of C2F4/ rate of Y = sqrt of molar mass of gas Y/ molar mass of C2F4
= (4.6 x10^-6/ 5.8 x10^-6) = sqrt of Y/ 100
remove the square root sign by squaring in both side
(4.6 x 10^-6 / 5.8 x10^-6)^2 = Y/100
= 0.629 =Y/100
multiply both side by 100
Y= 62.9 is the molar mass of unknown gas
1) 2700 kg/l
2) 13.6 kg/l
3) 0.1578 kg
4) 8921.5 kg/m3
5) 1.59 kg/l
6) 1.84 kg/l
7) 0.21965 kg
8) 11331.9 kg/m3
9) 7.9167 kg/l
10) 238.095 cm3
Just divide the masses by volume to find out the density, multiply the volume with density to find out the mass and divide the mass by density to find out the volume.
To turn the result into SI unit (kg/l), divide the g by 1000 and ml by 1000.
Answer:
The minimum volume of the container is 0.0649 cubic meters, which is the same as 64.9 liters.
Explanation:
Assume that ethane behaves as an ideal gas under these conditions.
By the ideal gas law,
,
.
where
is the pressure of the gas,
is the volume of the gas,
is the number of moles of particles in this gas,
is the ideal gas constant, and
is the absolute temperature of the gas (in degrees Kelvins.)
The numerical value of
will be
if
,
, and
are in SI units. Convert these values to SI units:
;
shall be in cubic meters,
;
.
Apply the ideal gas law:
.