Answer:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find

<h2>
Answer: either way</h2>
The balloon contains neutral charge atoms, that is, it has the same number of electrons (negative charge), protons (positive charge) and neutrons (no charge).
Then, when two objects come into contact, the electrons of one of them can become part of the other.
Thus, by bringing the balloon closer to the wall, the wall, which is also made up of atoms, will reorder its charges in such a way that its electrons or protons become part of the balloon, charging it.
Answer:
TEJ as this is a thing you wont get
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Answer:
option B is the correct answer
Explanation:
please follow me and Mark me brainliest please