1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
11

A 6kg object speeds up from 5 m/s to 20 m/s. find p

Physics
2 answers:
kicyunya [14]3 years ago
6 0

as we know tha momentum is product of mass and velocityi.e p=mv but here in this question velocity changes from 5m/s to 20 m/s so here formula becomes

p=(final velocity -initial velocity )mass

so (20-5)6=90kgm/s ANS

mrs_skeptik [129]3 years ago
4 0

Momentum = mass x speed

The object's momentum is 30 kg-m/s at the beginning, 120 kg-m/s at the end, and its change in momentum is 90 kg-m/s .

You might be interested in
6. A light ray strikes a reflective plane surface at an angle of 560 with the surface.
Zolol [24]

Answer:

deez nouts

Explanation:

5 0
3 years ago
Find the shear stress and the thickness of the boundary layer (a) at the center and (b) at the trailing edge of a smooth flat pl
melomori [17]

Answer:

a) The shear stress is 0.012

b) The shear stress is 0.0082

c) The total friction drag is 0.329 lbf

Explanation:

Given by the problem:

Length y plate = 2 ft

Width y plate = 10 ft

p = density = 1.938 slug/ft³

v = kinematic viscosity = 1.217x10⁻⁵ft²/s

Absolute viscosity = 2.359x10⁻⁵lbfs/ft²

a) The Reynold number is equal to:

Re=\frac{1*3}{1.217x10^{-5} } =246507, laminar

The boundary layer thickness is equal to:

\delta=\frac{4.91*1}{Re^{0.5} }  =\frac{4.91*1}{246507^{0.5} } =0.0098 ft

The shear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{1}  )(246507)^{0.5} =0.012

b) If the railing edge is 2 ft, the Reynold number is:

Re=\frac{2*3}{1.215x10^{-5} } =493015.6,laminar

The boundary layer is equal to:

\delta=\frac{4.91*2}{493015.6^{0.5} } =0.000019ft

The sear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{2}  )(493015.6^{0.5} )=0.0082

c) The drag coefficient is equal to:

C=\frac{1.328}{\sqrt{Re} } =\frac{1.328}{\sqrt{493015.6} } ==0.0019

The friction drag is equal to:

F=Cp\frac{v^{2} }{2} wL=0.0019*1.938*(\frac{3^{2} }{2} )(10*2)=0.329lbf

7 0
3 years ago
An object initially at rest experiences an acceleration of 0.281 m/s2 to the South for a time of 5.44 seconds. It then increases
andre [41]

Answer:

12.0 meters

Explanation:

Given:

v₀ = 0 m/s

a₁ = 0.281 m/s²

t₁ = 5.44 s

a₂ = 1.43 m/s²

t₂ = 2.42 s

Find: x

First, find the velocity reached at the end of the first acceleration.

v = at + v₀

v = (0.281 m/s²) (5.44 s) + 0 m/s

v = 1.53 m/s

Next, find the position reached at the end of the first acceleration.

x = x₀ + v₀ t + ½ at²

x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²

x = 4.16 m

Finally, find the position reached at the end of the second acceleration.

x = x₀ + v₀ t + ½ at²

x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²

x = 12.0 m

5 0
3 years ago
which of the following cannot be increased by using a machine of some kind? work, force, speed, torque
Lemur [1.5K]

Explanation:

Work cannot be increased by using a machine of some kind.

8 0
3 years ago
A 20.0 kg crate sits at rest at the bottom of a 15.0-m-long ramp that is inclined at 34.0° above horizontal. A constant horizont
ankoles [38]

Answer:

987 joules, 3.01s

Explanation:

(A)

from the attached diagram

net force, Fnet, pulling the crate up the ramp is given by

Fnet = FcosФ - WsinФ - Fr

where FcosФ is the component of horizontal force 290N resolved parallel to the plane

WsinФ = mgsinФ = component of the weight of the crate resolved parallel to the plane

Fr = constant opposing frictional force

Fnet = 290cos34⁰ - 20 × 9.8 × sin34° - 65

Fnet = 240.421 - 109.602 - 65

Fnet = 65.82N

Work done on the crate up the ramp, W, is given by

W = Fnet × d (distance up the plane)

W = 65.819 × 15

W = 987.285 joules

W = 987 joules (to 3 significant Figures)

(B)

to calculate the time of travel up the ramp

we use the equation of motion

s = ut + \frac{1}{2}at^{2}

where s = distance up the plane, 15m

u = Initial velocity of the crate, which is 0 for a body that is initially at rest

a = acceleration up the plane, given by

a = \frac{Fnet}{m}

where m = mass of the crate, 20 kg

now, a = \frac{65.819}{20} \\a = 3.291\frac{m^{2} }{s}

from, s = ut + \frac{1}{2}at^{2}

15 = 0*t + \frac{1}{2}* 3.291 * t^{2}

15 = 0 + 1.645t^{2}

15 = 1.645t^{2}

t = \sqrt{\frac{15}{1.645} }

t = 3.019

t = 3.01s (to 3 sig fig)

7 0
3 years ago
Other questions:
  • Absorbed energy is said to be quantized. This means:____________ a) Energy is absorbed only by valence electrons. b) Energy caus
    11·1 answer
  • What volume of .2500 m cobalt iii chloride is required to react completely with 25 ml of .0315 m calcium hydroxide?
    13·1 answer
  • An atom is the most __________ unit of living and nonliving things.
    8·2 answers
  • Find the mean and median of the following data set: 98, 87, 92, 79, 65, 91, 80, 92, 85, 86.
    11·1 answer
  • If a polar is swimming with an average of 2.6 m/s how far will it traveled after 120 seconds ?
    5·1 answer
  • Please solve it ,,,,,,,,,,................................
    13·1 answer
  • What is a property of matter that can be measured or observed using the 5 senses
    13·2 answers
  • Which single force acts on an object in free fall
    11·2 answers
  • Calculate the sample standard deviation and sample variance for the following frequency distribution of hourly wages for a sampl
    8·1 answer
  • What is the range of motion of the elbow if extension is 0° and flexion is 145°?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!