Explanation:
It <em><u>provides an objective, standardized approach to conducting experiments</u></em> and, in doing so, improves their results. By using a standardized approach in their investigations, scientists can feel confident that they will stick to the facts and limit the influence of personal, preconceived notions.
I hope this helps you out!
Answer:
a stable octet state
Explanation:
a stable octet state is when all the energy levels of the atoms are filled with electrons and they are stabe
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
The equation for the reaction is:
C₄H₈O₂ + C₂H₅OH = C₆H₁₂O₂ + H₂O
Now you see that the number of the moles of butanoic acid
and etyl butyrate is equal in
the reaction. That means;
number of moles of C₄H₈O₂ = number of moles of C₆H₁₂O₂
mass of C₄H₈O₂/ Molar mass of C₄H₈O₂ = mass of C₆H₁₂O₂/ molar mass of C₆H₁₂O₂
mass of C₆H₁₂O₂ = molar mass of C₆H₁₂O₂ x mass of C₄H₈O₂/ Molar mass of C₄H₈O₂
Now, assuming <span>100% yield, the mass
of ethyl butyrate produced is: </span>
<span>= 7.45/88.11 x 116.16</span>
<span>=9.82g</span>
<span>Thus, the theoretical yield of ethyl butyrate is 9.82g.</span>
Answer:
Below
Explanation:
2) there are 28 protons in this isotope
The number that is on the bottom of the "stacked pair" tells you how many protons are in this isotope. It is often represented by the variable Z.
3) there are 35 neutrons in this isotope
Subtract the number of protons (28) from the top number
4) there are 28 electrons in the neutral element of Nickel
If you were to look at the period table and find Ni, you would see that its atomic number is 28. This number tells us the amount of protons and electrons there are in that element.
5) 62.9296694 atomic mass units
Just search it up (unless your teacher wants you to calculate it)
6) there are 92 protons in this isotope
Again just look at the Z value to find the proton count
7) there are 146 neutrons in this isotope
Subtract 238 - 92 = 146
8) there are 92 electrons in the neutral element of uranium
Again just look at the periodic table and find U
9) 238.0507882 atomic mass units
10) 12C or carbon 12 is more likely to bond with oxygen that 14c carbon 14
This is because 12C is more abundant at 98.93% than 14C
Hope this helps! Best of luck <3