Answer:
Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).
Explanation:
Explanation:
The critical velocity is that velocity of liquid flow, up to which its flow is streamlined (laminar)& above which its flow becomes turbulent. It's denoted by Vc & it depends upon: Coefficient of viscosity of liquid (η) Density of liquid. Radius of the tube.
Better technology is helping us because we can see more stuff like the microscope we able to make assumptions based on what we saw.
R1 + R4 = 1430 + 1350 = 2780 = R14 series combination of R1 & R4
R2 + R5 = 1350 + 1150 = 2500 = R25
The circuit has been reduced to 3 resistors in parallel
R314 = 2780 * 1100 / (2780 + 1100) = 788 this is the resistance of the parallel combination of R14 and R3
R31425 = 2500 * 788 / (2500 + 788) = 599 which is the equivalent of the circuit - you can also use the formula for 3 resistors in parallel but this seems simpler
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years