Answer:
27.22 dm³
Explanation:
Given parameters:
number of moles = 1 mole
temperature= 50°C, in K gives 50+ 273 = 323K
Pressure= 98.6kpa in ATM, gives 0.973 ATM
Solution:
Since the unknown is the volume of gas, applying the ideal gas law will be appropriate in solving this problem.
The ideal gas law is mathematically expressed as,
Pv=nRT
where P is the pressure of the gas
V is the volume
n is the number of moles
R is the gas constant
T is the temperature
Input the parameters and solve for V,
0.973 x V = 1 x 0.082 x 323
V= 27.22 dm³
Answer:
Explanation:
Given that:
Pressure = 791 mmHg
Temperature = 20.0°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (20 + 273.15) K = 293.15 K
T = 293.15 K
Volume = 100 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 62.3637 L.mmHg/K.mol
Applying the equation as:
791 mmHg × 1.14 L = n × 62.3637 L.mmHg/K.mol × 293.15 K
⇒n of
produced = 0.0493 moles
According to the reaction:-

1 mole of carbon dioxide is produced 1 mole of calcium carbonate reacts
0.0493 mole of carbon dioxide is produced 0.0493 mole of calcium carbonate reacts
Moles of calcium carbonate reacted = 0.0493 moles
Molar mass of
= 100.0869 g/mol
The formula for the calculation of moles is shown below:
Thus,

Impure sample mass = 5.28 g
Percent mass is percentage by the mass of the compound present in the sample.
Air Pressure drops more rapidly with altitude in a column of cold air than in warm air.The answers to this question are cold air and warm air, respectively.
<span>Cold air is known to be dense while warm air is known otherwise to be less thens which makes it move upwards. Cold air experiences more pressure as it moves upwards.</span>
Answer:
It was built to house the employees of the Chernobyl Nuclear Power Plants located 4 kilometers away and became the ninth nuclear city in the Soviet Union.
Explanation: