Answer:lanthanides is the answer and here is a picture for proof
Explanation:
Answer:
D
Explanation:
D. V1P1 / T1=V2P2 / T2 is correct
nuclear power--used to turn turbines...
fossil fuels--burned to provide energy that is....
renewable energy--energy that with come back after use
outlet--a device....
steam--nuclear reactors....
I'm not sure but I tried lol,lemme know if I'm wrong :D
The average atomic mass of her sample is 114.54 amu
Let the 1st isotope be A
Let the 2nd isotope be B
From the question given above, the following data were obtained:
- Abundance of isotope A (A%) = 59.34%
- Mass of isotope A = 113.6459 amu
- Mass of isotope B = 115.8488 amu
- Abundance of isotope B (B%) = 100 – 59.34 = 40.66%
- Average atomic mass =?
The average atomic mass of the sample can be obtained as follow:

Thus, the average atomic mass of the sample is 114.54 amu
Learn more about isotope: brainly.com/question/25868336
Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612