Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K
Answer:
Oxygen, and from solid to liquid. This is because oxygen's melting point is at -218°C. Melting point refers to the temperature where heat causes particles to vibrate with sufficient energy to break the solid structure, so for oxygen this means it's being turned into a liquid.
Amount of CH4 is excess, so no need to worry about it
<span>but the limiting factor is the Oxygen </span>
<span>according to stranded equation, </span>
<span>CH4 + 2 O2 --> CO2 + 2 H2O ΔH = -889 kJ/mol </span>
<span>just by taking proportions </span>
<span>(-889 kJ/mol) / 2 x 0.8 mol = - 355.6 kJ </span>
<span>so i think the answer is (a)</span>
Answer is: the collision theory.
The collision theory states that a certain fraction of the collisions (successful collisions) cause significant chemical change.
The successful collisions must have enough energy (activation energy), on this diagram that energy is represented with arrow up.
Chemical bonds are broken (between blue and red-black molecules) and new bonds are formed (between blue-red and blue-black molecules), as it is represented on diagram.