The question here would be what is the volume of the room. The density of air that is given has no use. We simply multiply the dimensions given of the room to determine the volume.
<span>43.0m × 18.0m × 15.0m = 11610m^3 ( 3.28 ft / 1 m)^3 = 4.09 x 10^5 ft^3</span>
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Explanation:
As wine and cheese are consumed together,it means that they both are complimentary goods.
As per law of demand,the fall in price of a complimentary good would increase the demand and shift the demand curve of the other to the right.
The equilibrium quantity of cheese would increase and shift to right when the price of wine falls.
The question is whether the statement is true or false.
The answer if false.
Explanation:
It is exactly the opposite. The soccer ball will hit the ground with greater velocity.
Since the soccer ball is thrown upward, when it returns to the same heigth from which it was throwm it will have a velocity downward, which will make that the soocer ball reaches the ground at the bottom of the clif with greater velocity than the volleball.
The greater the velocity with which the soccer ball is thrown upward, the greater its velocity when reaches the same point from which it was thrown, and the greater the velocity with which it will hit the ground at the bottom of the clif.