The positively charged atmosphere attracts negatively charged spider silk, might electrostatic force play in spider dispersal, according to a recent study.
Answer: Option C
<u>Explanation:</u>
The positive charge present in upper of the atmosphere and the negative charge on planet’s surface. During cloudless skies days, the air possesses a voltage of nearly around 100 volts for each and every meter from above the ground.
Ballooning spiders process within this planetary electric field. When their silk relieve their bodies then it picks up a negative charge. This oppose the similar negative charges on the surfaces on which the spiders settles and create sufficient force to lift them into the air. And spiders can hike those forces by climbing onto blades of grass,twigs, or leaves.
Moment of force. Hope this helped
Answer:Decreases
Explanation:
Given
Volume is held constant that is it is a isochoric process.
We know that
PV=nRT
as n,V& R are constant therefore only variables are
P & T
so 

As
is decreasing therefore Pressure must also decrease so that ratio remains constant.
Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Answer:
See the explanation below
Explanation:
Density is defined as the relationship between mass and volume, i.e. the following equation can be used:
density = m/v
where:
density [kg/m^3]
m = mass [kg]
v = volume [m^3]
If we change the volume of a body by reducing its size, its mass will also decrease proportionally with a density as seen in the equation.
m = density*v
To understand this concept more clearly, let's use the following example:
We know that the density of water is equal to 1000 [kg/m^3], that is, 1 cubic meter of water contains 1000 kilograms of water, using the equation.
1000 = m /1
m = 1000*1 = 1000 [kg]
Now if we have 500 kilograms of water, that would pass with the volume so that the density remains constant.
1000 = 500/v
v = 500/1000
v = 0.5 [m^3]
We can see that the volume of water has halved. Since the mass of water was reduced by half. That is, the relationship between mass and volume is proportional to the density of the material or substance.