Conversion of mole to grams
k in mole = 1 mole/ atomic mass
K in mole =1/ 39.0983 g/mole
= 0.255765 g/mole
converting 40 grams of K
K 40 grams x [ 1 mole/ 39.0983 grams] = 1.0230623 mole
There are 1.0230623 moles of K in 40 K of Potassium
Answer is: 1.29 grams <span>of solid formed.
</span>Chemical reaction: 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq).
n(AgNO₃) = c(AgNO₃) · V(AgNO₃).
n(AgNO₃) = 0.220 M · 0.0351 L.
n(AgNO₃) = 0.0078 mol; limiting reactant.
n(K₂CrO₄) = 0.420 M · 0.052 L.
n(K₂CrO₄) = 0.022 mol.
From chemical reaction: n(AgNO₃) : n(Ag₂CrO₄) = 2 : 1.
n(Ag₂CrO₄) = 0.0078 mol ÷ 2.
n(Ag₂CrO₄) = 0.0039 mol.
m(Ag₂CrO₄) = 0.0039 mol · 331.73 g/mol.
m(Ag₂CrO₄) = 1.29 g.
Answer:
0.45 moles
Explanation:
The computation of the number of moles left in the cylinder is shown below:
As we know that
we can say that
where,
n1 = 1.80 moles of gas
V2 = 12.0 L
And, the V1 = 48.0 L
Now placing these values to the above formula
So, the moles of gas in n2 left is
= 0.45 moles
We simply applied the above formulas so that the n2 moles of gas could arrive
Answer:
8.6g/cm³ (BRASS)
Explanation:
Given the following :
Mass of object = 86g
Volume of object = 10cm³
The density of an object is calculated using the formula :
Density(g/cm³) = mass(g) / volume(cm³)
Inputting our values :
Density = 86g / 10cm³
Density = 8.6g/cm³
According to the table provided, the object which corresponds to having a density of 8.6g/cm³ is BRASS
Answer:
121 g/mol
Explanation:
To find the molar mass, you first need to calculate the number of moles. For this, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Because density is comparing the mass per 1 liter, I am assuming that the system has a volume of 1 L. Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 1.00 atm R = 0.0821 L*atm/mol*K
V = 1.00 L T = 25.0. °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(1.00 atm)(1.00L) = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = (24.478115)n
0.0409 = n
Now, we need to find the molar mass using the number of moles per liter (calculated) and the density.
0.0409 moles ? grams 4.95 grams
---------------------- x ------------------ = ------------------
1 L 1 mole 1 L
? g/mol = 121 g/mol
**note: I am not 100% confident on this answer