Answer:
When the Earth rotates on its axis, it prevents air currents from going in a straight line to the north and the south from the equator. It results in one of the effects of rotation of the Earth: the Coriolis Effect.
Answer:
No, it is not sufficient
Please find the workings below
Explanation:
Using E = hf
Where;
E = energy of a photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency
However, λ = v/f
f = v/λ
Where; λ = wavelength of light = 325nm = 325 × 10^-9m
v = speed of light (3 × 10^8 m/s)
Hence, E = hv/λ
E = 6.626 × 10^-34 × 3 × 10^8 ÷ 325 × 10^-9
E = 19.878 × 10^-26 ÷ 325 × 10^-9
E = 19.878/325 × 10^ (-26+9)
E = 0.061 × 10^-17
E = 6.1 × 10^-19J
Next, we work out the energy required to dissociate 1 mole of N=N. Since the bond energy is 418 kJ/mol.
E = 418 × 10³ ÷ 6.022 × 10^23
E = 69.412 × 10^(3-23)
E = 69.412 × 10^-20
E = 6.9412 × 10^-19J
6.9412 × 10^-19J is required to break one mole of N=N bond.
Based on the workings above, the photon, which has an energy of 6.1 × 10^-19J is not sufficient to break a N=N bond that has an energy of 6.9412 × 10^-19J
Answer : The volume of the bubble is, 625 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 2.4 atm
= final pressure of gas = 1.0 atm
= initial volume of gas = 250 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the volume of the bubble is, 625 mL
Answer:
B. a strongly basic solution
Explanation:
Kb is base dissociation constant, which indicates how completely a base dissociates into its component ions in water. The greater the Kb value, the greater the alkalinity of the solution and vice versa.
Therefore, a solution with a Kb value much greater than 1, indicates a strongly basic solution, while a solution with a Kb value less than 1, indicates a weakly basic solution.
The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877