Answer:
the answer is solid change into liquide.
please mark me as a brainlist..
Answer: A. Gamma Ray
Explanation:
X-ray scans can diagnose possibly life-threatening conditions such as blocked blood vessels, bone cancer, and infections. However, x-rays produce ionizing radiation—a form of radiation that has the potential to harm living tissue. However, the risk of developing cancer from radiation exposure is generally small.
Please mark brainliest if it helped :)
<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
The volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
<h3>How to calculate volume?</h3>
The volume of a solution can be calculated by dividing the mass by the density. That is;
Volume = mass/density
According to this question, a soft drink contains 12.1% sucrose (C12H22O11) by mass. This means that the mass of the sucrose is
12.1/100 × 102.5 = 12.40g of sucrose
Volume = 12.40g ÷ 1.04g/mL
Volume = 11.93mL
Therefore, the volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
Learn more about volume at: brainly.com/question/1578538
The molar concentration will be greater than 0.01 M
.
Since more of the compound was measured out than what was calculated, you can think of the solution as being 'stronger' than what it was calculated to be. Since a 'stronger' concentration results in a number that is higher, the molarity of this solution is going to be greater than 0.01 M.