Answer:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m )
Curve amplitude : This is the maximum value of the radial velocity curve
Radial velocity shape ; The shape of Radial velocity curve is parabolic in nature
Orbital period : Orbital period is the time taken by the star to make one complete rotation in its orbit
Explanation:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m ) while Curve amplitude is the maximum value of the radial velocity curve also The shape of Radial velocity curve is parabolic in nature. and Orbital period is the time taken by the star to make one complete rotation in its orbit
The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
An intensive property is a property that does not change depending on how much mass of it you are considered. An example of an intensive property is density. No matter how much water you examine, the density of the sample will be 1g/cm³.
<span>In 1669 German merchant and amateur alchemist Hennig Brand attempted to created a Philosopher’s Stone; an object that supposedly could turn metals into pure gold. He heated residues from boiled urine, and a liquid dropped out and burst into flames. This was the first discovery of phosphorus.
In 1680 Robert Boyle also discovered phosphorus, and it became public.
In 1809 at least 47 elements were discovered, and scientists began to see patterns in the characteristics.
In 1863 English chemist John Newlands divided the then discovered 56 elements into 11 groups, based on characteristics.
In 1869 Russian chemist Dimitri Mendeleev started the development of the periodic table, arranging chemical elements by atomic mass. He predicted the discovery of other elements, and left spaces open in his periodic table for them.
In 1886 French physicist Antoine Bequerel first discovered radioactivity. Thomson student from New Zealand Ernest Rutherford named three types of radiation; alpha, beta and gamma rays. Marie and Pierre Curie started working on the radiation of uranium and thorium, and subsequently discovered radium and polonium. They discovered that beta particles were negatively charged.
In 1894 Sir William Ramsay and Lord Rayleigh discovered the noble gases, which were added to the periodic table as group 0.In 1897 English physicist J. J. Thomson first discovered electrons; small negatively charged particles in an atom. John Townsend and Robert Millikan determined their exact charge and mass.
In 1900 Bequerel discovered that electrons and beta particles as identified by the Curies are the same thing.
In 1903 Rutherford announced that radioactivity is caused by the breakdown of atoms.
In 1911 Rutherford and German physicist Hans Geiger discovered that electrons orbit the nucleus of an atom.
In 1913 Bohr discovered that electrons move around a nucleus in discrete energy called orbitals. Radiation is emitted during movement from one orbital to another.
In 1914 Rutherford first identified protons in the atomic nucleus. He also transmutated a nitrogen atom into an oxygen atom for the first time. English physicist Henry Moseley provided atomic numbers, based on the number of electrons in an atom, rather than based on atomic mass.
In 1932 James Chadwick first discovered neutrons, and isotopes were identified. This was the complete basis for the periodic table. In that same year Englishman Cockroft and the Irishman Walton first split an atom by bombarding lithium in a particle accelerator, changing it to two helium nuclei.
In 1945 Glenn Seaborg identified lanthanides and actinides (atomic number >92), which are usually placed below the periodic table.</span>
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised