1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
15

A jogger runs 20 mi West and then 6.0 mi North. Find the magnitude and direction of the resultant displacement.

Physics
1 answer:
Black_prince [1.1K]3 years ago
4 0

Answer:

The magnitude of the resultant displacement is 21 mi and its direction is 16.7° north of west

Explanation:

Hi there!

Please see the figure for a better understanding of the problem. The total displacement vector will be the sum of both displacements:

The vector for the first displacement is:

First displacement = (20 mi, 0)

The second displacement:

Second displacement = (0, 6.0 mi)

The resultant displacement will be:

R = (20 mi, 0) + (0, 6.0 mi) = (20 mi + 0, 0 + 6.0 mi) = (20 mi, 6.0 mi)

The magnitude of this vector will be:

|R| = \sqrt{(20 mi)^{2} + (6.0 mi)^{2}} = 21 mi

The magnitude of the vector displacement is 21 mi.

To find the direction of the vector R, we have to apply trigonometry:

In a right triangle the following trigonometric rule applies:

cos θ = adjacent side to the angle/ hypotenuse

In this case:

cos θ = 20 mi / magnitude of R

θ = 16.7°

The direction of the vector is 16.7° north of west.

You might be interested in
Suppose you pour 0.250 kg of 20.0°C water into a 0.600 kg aluminum pan off the stove with a temperature of 173°C. Assume that th
lapo4ka [179]

Answer:

T_f=5.0116^{\circ}C

Explanation:

Given:

  • mass of water, m_w=0.25\ kg
  • initial temperature of water, T_i_w=20^{\circ}C
  • initial temperature of pan, T_i_p=173^{\circ}C
  • mass of pan, m_p=0.6\ kg
  • mass of water evapourated, m_v=0.03\ kg
  • specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}
  • specific heat of aluminium pan, c_a=900\ J.kg^{-1}.K^{-1}
  • latent heat of vapourization, L=2256000\ J.kg^{-1}

<u>Using the equation of heat:</u>

<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>

m_p.c_a.(T_{ip}-T_f)=m_v.L+(m_w-m_v).c_w.(T_f-T_{iw})

0.6\times 900\times (173-T_f)=0.03\times 2256000+(0.25-0.03)\times 4186\times (T_f-20)

T_f=5.0116^{\circ}C

5 0
3 years ago
Based on the principles of convection, conduction and thermal radiation, which scenario below is most similar to the following s
Ksivusya [100]

The situation (heat going through the ceiling) describes
conduction ...
heat going from one place to another by
soaking through some material.

A).  This is the one.  Heat goes from from the marshmallow
to your hand by soaking through the wire.   This is conduction too.

B).  No.  The heat in the room goes from the floor to the ceiling
because the warm air rises and carries it there.  This is convection.

C).  No.  There's nothing for the heat to soak through between
the sun and the roof, and nothing that can move from the sun
to the roof and bring the heat with it.  This is radiation.

D).  No.  Cold water sinks from the surface to the bottom because
warm water rose from the bottom to the surface, taking heat with it. 
This is convection.

5 0
3 years ago
Read 2 more answers
How far does a runner run if he runs for 60 seconds at 5 m/s
mylen [45]

Answer: 20 miles

Explanation:

4 0
3 years ago
When the voltage across a steady resistance is doubled, the current?
natima [27]

I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.

<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know V and I use formula P = IV: P = IV = (100mA)(10V) = 1 W.</span>

The next question is what I'm not sure about:

Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).

What I did initially was: P = IV = (100mA)(2V) = 2 W

But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."

So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.

P = IV = (200mA)(2V) = 4 W

8 0
3 years ago
an astronaut weighs 104 newtons on the moon where the strength of gravity is 1.6 newtons per kilogram what is her mass
Andreas93 [3]
M = W/g
mass (m)
weight (W) and strength of gravity (g)
Therefore the mass of the astronaut is 65 kilograms
7 0
3 years ago
Other questions:
  • Shear stress created the San Andreas Fault in Southern California. It is an example of a _____.
    11·2 answers
  • A car traveled at a constant velocity of 70 mph from noon to 2:00 pm. At 3:00 pm the velocity of the car was 80 mph; and finally
    8·1 answer
  • What is true about the atoms in helium gas​
    12·2 answers
  • Leta Stetter Hollingworth conducted pioneering work on __________. A. identity development in ethnic minorities B. cognitive pro
    10·2 answers
  • How much time does it take for a plane To fly 5000 miles if the plane travels a speed of 500 miles per hour?
    13·2 answers
  • A person carries a plank of wood 1.6 m long with one hand pushing down on it at one end with a force F1 and the other hand holdi
    9·1 answer
  • Which one of the following best describes a fuse?
    14·1 answer
  • 4. AN OBJECT INCREASES ITS VELOCITY
    13·1 answer
  • Can someone pls help I’m stuck!
    7·1 answer
  • Am object of mass in a circular path of radius 100metres with the speed of 10metres/second.calculate the acceleration towards th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!