Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
Answer:
A. Mass
Explanation:
Inertia of an object is the resistance of the object to any change in its state of motion: it means that if an object is at rest, it tends to stay at rest for inertia (unless a net force acts on it), and if it is moving, it tends to continue moving with the same velocity, for inertia.
The inertia also describes how difficult it is to stop/accelerate an object, and it is directly proportional to the mass of the object: in fact, the larger the mass of an object, the more difficult it is to change its state of motion, and this means it has greater inertia.
Answer:
detecting and indicating an electric current
Answer:
The fraction of the object that is below the surface of the water is ¹⁷/₂₀
Explanation:
Given;
specific gravity of the object, γ = 0.850
Specific gravity is given as;

Fraction of the object's weight below the surface of water is calculated as;

Therefore, the fraction of the object that is below the surface of the water is ¹⁷/₂₀