Answer:
Strong acid
Explanation:
An acid is a substance that interacts with water to produce excess hydroxonium ions in an aqueous solution.
Hydroxonium ions are formed as a result of the chemical bonding between the oxygen of water molecules and the protons released by the acid due to its ionisation. This makes aqueous solution of acids conduct electricity.
A strong acid is one that ionizes almost completely. Examples are:
1. Hydrochloric acid
2. Tetraoxosulphate (VI) acid
3. Trioxonitrate (V) acid
4. Hydroiodic acid
5. Hydrobromic acid
Obviously since plant cell contains chloroplasts.
Answer:
1. Potassium, K.
2. Calcium, Ca.
3. Gallium, Ga.
4. Carbon, C.
5. Bromine, Br.
6. Barium, Ba.
7. Silicon, Si.
8. Gold, Au.
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
Additionally, the unit of measurement of the atomic radius of chemical elements is picometers (1 pm = 10 - 12 m).
1. Li or K: the atomic radius of lithium is 167 pm while that of potassium is 243 pm.
2. Ca or Ni: the atomic radius of calcium is 194 pm while that of nickel is 149 pm.
3. Ga or B: the atomic radius of gallium is 136 pm while that of boron is 87 pm.
4. O or C: the atomic radius of oxygen is 48 pm while that of carbon is 67 pm.
5. Cl or Br: the atomic radius of chlorine is 79 pm while that of bromine is 94 pm.
6. Be or Ba: the atomic radius of berryllium is 112 pm while that of barium is 253 pm.
7. Si or S: the atomic radius of silicon is 111 pm while that of sulphur is 88 pm.
8. Fe or Au: the atomic radius of iron is 156 pm while that of gold is 174 pm.
Answer:
The predator-prey relationship helps to hold the populations of the two species in equilibrium. ... If the population of prey increases, there is more food for predators. So after a slight period, the predator population is also increasing. If the number of predators increases, more prey is captured.
Explanation: