If only 1 option is correct then it is (D)
All the others can also make one component negative, all depends how u measured the angle.
all the best
Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Distance travelled in south direction= 1.5hr*0.75km/hr= 1.125km
Distance travlled in north direction= 0.90*2.5=2.25
Net displacement = 2.25-1.125= 1.125 to the north
Answer:
B. 0.552
Explanation:
To find the resistance in the circuit above, u simply divide the current in the circuit by the voltage to get the resistance.
The distance between the two adjacent nodes = λ/2.
<h3>What is Wavelength?</h3>
A periodic wave's wavelength is its spatial period, or the length over which its form repeats. It is a property of both travelling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda (λ) is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
The distance between the two adjacent nodes = λ/2.
for the standing wave ,the distance between any two adjacent nodes or antinodes is 1/2 λ.
to learn more about the wavelength go to - brainly.com/question/6297363
#SPJ4