Answer:
salt water, air and vinegar are homogeneous solutions.
Explanation:
A solution which consists of particles of same proportion is known as a homogeneous solution. Whereas a solution which consists of particles of different proportion is known as a heterogeneous solution.
Salt and water are homogeneous solutions as salt completely disperses in water and forms a clear solution as the particles of salt and water are in proportion.
Air is composed of different gases like nitrogen, oxygen etc are all mixed in fixed ratio. Therefore, air is a homogeneous mixture.
Sand and water are heterogeneous solution as the ration of mixing is different and more over sand particles can be separated from water. Thus, it is not a homogeneous mixture.
Vinegar is also a homogeneous solution as it is composed of acetic acid and water which are mixed in fixed proportion.
Cement is a heterogeneous mixture as it is composed of a number of different substances mixed in different proportions.
Thus, we can conclude that salt water, air and vinegar are homogeneous solutions.
The release of free energy drives the spontaneous reaction.
Spontaneity can be <span>determined
using the change in </span>Gibbs free energy
(the thermodynamic potencial):
delta G=delta H – T*delta
S
where delta H is the enthalpy and delta S is the entropy.
The direction (the sign) of delta G depends of the changes
of enthalpy and entropy. If delta G is negative then the process is
spontaneous.
In our case, both delta H and delta S are negative values, the
process as said is spontaneous which means that it may proceed in the forward
direction.
Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
Answer: Go to the harbor. When a ship sails off toward the horizon, it doesn't just get smaller and smaller until it's not visible anymore. Instead, the hull seems to sink below the horizon first, then the mast. When ships return from sea, the sequence is reversed: First the mast, then the hull, seem to rise over the horizon.
Climbing to a high point will allow you to be able to see farther if you go higher. If the Earth was flat, you'd be able to see the same distance no matter your elevation
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51