Answer:
1. Percentage by weight = 0.5023 = 50.23 %
2. molar fraction =0.153
Explanation:
We know that
Molar mass of HClO4 = 100.46 g/mol
So the mass of 5 Moles= 5 x 100.46
Mass (m)= 5 x 100.46 = 502.3 g
Lets assume that aqueous solution of HClO4 and the density of solution is equal to density of water.
Given that concentration HClO4 is 5 M it means that it have 5 moles of HClO4 in 1000 ml.
We know that
Mass = density x volume
Mass of 1000 ml solution = 1 x 1000 =1000 ( density = 1 gm/ml)
m'=1000 g
1.
Percentage by weight = 502.3 /1000
Percentage by weight = 0.5023 = 50.23 %
2.
We know that
molar mass of water = 18 g/mol
mass of water in 1000 ml = 1000 - 502.3 g=497.9 g
So moles of water = 497.7 /18 mole
moles of water = 27.65 moles
So molar fraction = 5/(5+27.65)
molar fraction =0.153
<span> She developed new models for emergency ultrasound education and competency assessment, created a successful emergency ultrasound fellowship program, and introduced electronic </span>workflow<span> solutions to </span>Hopkins<span>, increasing the use of emergency ultrasound by 7-fold.</span>
Explanation:
solid, liquids and gases are all made up of atoms and molecules
contrast
solids have a definite shape, liquids takes the shape of the container that contains it while gases do not have a shape
solids move about their mean positions, liquids move more freely while gases move in random motion
solids cannot be easily compressed, liquids can be compressed while gases can be easily compressed
The light intensity. The transparency of the filter, the bandwidth of the filter,
Also the color temperature of light source
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL