1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
3 years ago
10

5. Forces have

Physics
1 answer:
Verdich [7]3 years ago
7 0

5)

In physics, forces are interactions that are able to change the velocity of an object.

Force is a vector quantity, so it has a magnitude and a direction.

The SI units of the force is the Newton (N).

Whenever an unbalanced force is applied to an object, the object experiences an acceleration, according to Newton's second law of motion:

F=ma

where

F is the force

m is the mass of the object

a is its acceleration

So, the acceleration of an object is proportional to the force applied:

a=\frac{F}{m}

6)

In physics, arrows are used to represent vector quantities. Therefore, they are also used to represent forces.

In particular, when a vector quantity is represented by an arrowr:

- The length of the arrow is proportional to the magnitude of the vector quantity

- The direction of the arrow corresponds to the direction of the vector quantity

Therefore, if a force is represented through an arrow:

- The length of the arrow shows the strength (magnitude) of the force

- The direction of the arrow shows the direction of the force

7)

As we said in part 5), the SI units of the force is the Newton (N).

We can rewrite the Newton in terms of fundamental units only. We can do it starting from the equation:

F=ma

where

F is the force

m is the mass

a is the acceleration

- The mass is measured in kilograms (kg)

- The acceleration is measured in meters per second squared (m/s^2)

Therefore, 1 N corresponds to:

[N]=[kg][\frac{m}{s^2}]=[kg\cdot m \cdot s^{-2}]

B)

Gravity is an attractive force that exists between all objects that have mass. See more explanations about gravity in part 4).

3)

Mass is a scalar quantity; it gives us a measure of the "amount of matter" contained in an object.

The SI unit of the mass is the kilogram (kg).

Being a scalar, mass has no direction, but only a magnitude.

Moreover, the mass is an intrinsec property of an object: therefore, it does not depend on the location of the object. So, an object has always the same mass, either it is on Earth or on another planet.

On the other hand, the force of gravity on an object depends on its location, so it changes.

4)

As we said in part 3), gravity is an attractive force that exists between all objects that  have mass.

The magnitude of the force of gravity between two objects is given by the Universal Law of gravitation:

F=\frac{Gm_1 m_2}{r^2}

where

G is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between the objects

From the equation above, we observe that:

- all objects are attracted to one  another with a gravitational force that is proportional to the mass of the objects  and inversely proportional to the square of the distance between them.

And so:

a. When the mass of one or both objects increases, the gravitational force between  the objects increases

b. When the distance between two objects increases, the attraction between the  objects decreases

You might be interested in
A 0.5 μF and a 11 μF capacitors are connected in series. Then the pair are connected in parallel with a 1.5 μF capacitor. What i
NISA [10]

Answer:

C_{eq}=1.97\ \mu F

Explanation:

Given that,

Capacitance 1, C_1=0.5\ \mu F

Capacitance 2, C_2=11\ \mu F

Capacitance 3, C_3=1.5\ \mu F

C₁ and C₂ are connected in series. Their equivalent is given by :

\dfrac{1}{C'}=\dfrac{1}{C_1}+\dfrac{1}{C_2}

\dfrac{1}{C'}=\dfrac{1}{0.5}+\dfrac{1}{11}

C'=0.47\ \mu F

Now C' and C₃ are connected in parallel. So, the final equivalent capacitance is given by :

C_{eq}=C'+C_3

C_{eq}=0.47+1.5

C_{eq}=1.97\ \mu F

So, the equivalent capacitance of the combination is 1.97 micro farad. Hence, this is the required solution.

3 0
3 years ago
The jumping gait of the kangaroo is efficient because energy is stored in the stretch of stout tendons in the legs; the kangaroo
Anna [14]

Answer:

the period T of whole motion should be twice the value for half at he bottom so T is 0.2sec.

w is angular frequency

formula:2π/T

now k is spring constant

F/R-->mw²

putting values:70*(2π/0.2)²

=4.9x10⁶

so we can say that SHM is not affected by the amplitude of the bounce.

6 0
3 years ago
A key falls from a bridge that is 45 m above the water. the key falls straight down and lands in a model boat traveling at a con
erastova [34]

Let the key is free falling, therefore from equation of motion

h = ut +\frac{1}{2}gt^2..

Take initial velocity, u=0, so

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2.

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2 \\\ t =\sqrt{\frac{2h}{g} }

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

d= v \times t

From above substituting t,

d = v \times \sqrt{\frac{2h}{g} }.

Now substituting all the given values and g = 9.8 m/s^2, we get

d = 3.5 \ m/s \times \sqrt{\frac{2 \times 45 m}{9.8 m/s^2} } = 10.60 m.

Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.

7 0
3 years ago
The Earth orbits around the sun because the gravitational force that the sun
kotykmax [81]
<h3>Question -:</h3>

The Earth orbits around the sun because the gravitational force that the sun

exerts on the Earth:

O A. causes Earth's acceleration toward the sun.

O B. is very small because the sun is so far from the Earth.

O c. is smaller than the force the Earth exerts on the sun.

O D. pushes the Earth away from the sun.

<h3>Answer -:</h3>

O A. causes Earth's acceleration toward the sun.

<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>

5 0
3 years ago
You see lightning and 30 seconds later you hear thunder. how far away is the thunderstorm? take the speed of sound to be 339 m/s
Jobisdone [24]
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
      Speed = Distance/Time

For light,
   3 x 10^8 = d/t
                t = d/(3 x 10^8)   -1 

For sound,
           339 = d/(t + 30)       -2

Putting value from 1 in 2.
               d = 10^4 m(approx)
3 0
3 years ago
Other questions:
  • Which field in an 802.11a plcp frame are used to initialize part of the transmitter and receiver circuits?
    8·1 answer
  • When responding to sound, the human eardrum vibrates about its equilibrium position. suppose an eardrum is vibrating with an amp
    5·1 answer
  • While skateboarding at 19 km/h, Alana throws a tennis ball at 11 km/h to her friend Oliver. If Alana is the reference frame, the
    11·2 answers
  • What is the frequency of a wave having a period Equal to 18 seconds
    6·1 answer
  • How do open-market operations change the money supply?
    11·1 answer
  • You drive on Interstate 10 from San Antonio to Houston, half the time at 51 km/h and the other half at 71 km/h. On the way back
    7·1 answer
  • You decide to walk part of the way around a lake. The lake is a circle with a radius of 2.0 km You start on the shore due south
    11·1 answer
  • Explain how it is possible for two different elements to have the same mass number
    10·2 answers
  • A car, of mass 2.1 X 10^3 kg, travels in the horizontal plane around an unbanked curve of a radius of 275 m at a speed of 26 m/s
    8·1 answer
  • A 0.100 kg limestone cube is released from rest, and proceeds to slide down a frictionless ramp. At the bottom of the ramp, the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!