1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
15

Find the net force on q3. Include the direction ( +or-).

Physics
1 answer:
daser333 [38]3 years ago
8 0

Answer:

72.16 N

Explanation:

Given:

q₁ = -53.0 μC

q₂ = 105 μC

q₃ = -88.0 μC

q₁ to q₂ = 0.50 m

q₂ to q₃ = 0.95 m

To find:

Net force on q₃

Solution:

First compute net electric field on q₃

E = F/q = k.Q/d²

The formula of electric field at q₃:

E = k.Q / r²

Where    

r is distance

Q is magnitude of charge

k is a constant with a value of 8.99 x 10⁹ N m²/C²

When

q₂ to q₃ = 0.95m and

q₂ = 105 μC then

Find electric field due to charge q₂

E = ( (8.99 x 10⁹)x( 105 x 10⁻⁶) ) / 0.95²

  =  (8990000000  x 0.000105) / 0.9025

  = 943950  / 0.9025

  = 1045927.977839

  = 1.046 x 10⁶ N/C

This interprets that it will act or point away from q₂

q₁ to q₂= 0.50m

q₂ to q₃ = 0.95m and

q₁ = -53 μC then

Find electric field due to charge q₁

E = (8.99 x 10⁹) x (53 x 10⁻⁶) / (0 .50 + 0.95)²

  =  (8990000000  x  0.000053) / (1.45)²

  = 476470 /2.1025

  = 226620.689655

  = 0.227  x 10⁶ N/C

This interprets that it will act or point towards q₁

Since these fields are opposite in direction.

Compute Net Field

Net Field = 1.046 x 10⁶ - 0.227  x 10⁶ N/C

               =  1046000 - 227000

               = 819000

               = 0.819 x 10⁶

               ≈ 0.82 x 10⁶

This interprets that it will act or point away from q₂

Compute force on q3

q₃ E  = 88 x 10⁻⁶ x 0.82 x 10⁶

       = 88000000  x 820000

       = 72160000000000

       = 72.16 N

Force on -ive charge in a field is always in a direction opposite to direction of field

So this interprets that direction of this field will be towards q₂.

You might be interested in
How many electrons have been removed from a positively charged electroscope if it has a net charge of 6x10-11?
faltersainse [42]

Answer:

<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>

Explanation:

<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>
4 0
3 years ago
Explain Archimedes Principle
rusak2 [61]

Answer:

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

Explanation:

6 0
3 years ago
Suppose a light source is emitting red light at a wavelength of 700 nm and another light source is emitting ultraviolet light at
klasskru [66]

Answer:

b) twice the energy of each photon of the red light.

Explanation:

\lambda = Wavelength

h = Planck's constant = 6.626\times 10^{-34}\ m^2kg/s

c = Speed of light = 3\times 10^8\ m/s

Energy of a photon is given by

E=h\nu\\\Rightarrow E=h\dfrac{c}{\lambda}

Let \lambda_1 = 700 nm

\lambda_2=350\\\Rightarrow \lambda_2=\dfrac{\lambda_1}{2}

For red light

E_1=\dfrac{hc}{\lambda_1}

For UV light

E_2=\dfrac{hc}{\dfrac{\lambda_1}{2}}

Dividing the equations

\dfrac{E_1}{E_2}=\dfrac{\dfrac{hc}{\lambda_1}}{\dfrac{hc}{\dfrac{\lambda_1}{2}}}\\\Rightarrow \dfrac{E_1}{E_2}=\dfrac{1}{2}\\\Rightarrow E_2=2E_1

Hence, the answer is  b) twice the energy of each photon of the red light.

7 0
3 years ago
Read 2 more answers
One student did an experiment on the rock cycle.
Nonamiya [84]
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.

Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)

Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.

Based on the above, the best choice would be:
<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>

7 0
3 years ago
Necesito ayudaaaaaa por favor
natima [27]

MAnswer:

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A car races around a circular track. Friction on the tires is the what that acts toward the center of the circle and keeps the c
    6·1 answer
  • Ball of mass 200g is moving with a speed of 17m/s. What is its deBroglie wavelength?
    12·2 answers
  • A rifle of mass 2 kg is suspended by strings. The rifle fires a bullet of mass 0.01 kg at a speed of 200 m/s. The recoil velocit
    14·1 answer
  • Seems knows the mass of a basketball what other information is needed to find the balls potential energy
    9·1 answer
  • A wheel with rotational inertia i is mounted on a fixed, frictionless axle. the angular speed ω of the wheel is increased from z
    14·1 answer
  • A gas sample is heated from -20.0°C to 57.0°C and the volume is increased from 2.00 L to 4.50 L. If the initial pressure is 0.14
    8·1 answer
  • How do weathering and deposition differ
    12·1 answer
  • Why are some of the rocks on the moon older than the oldest known rocks on Earth?
    10·2 answers
  • Indicate all the forces acting on a block of wood​
    9·1 answer
  • The force F is expressed in terms of the mass “m” and acceleration “a” according to the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!