The energy required to heat a substance is related by the formula:
Q = mCpΔT ; where Q is the energy, m is the mass of the substance, Cp is the specific heat capacity and ΔT is the change in temperature.
2000 = (4)(Cp)(5)
Cp = 100 Joules / g °C
-- Use the formula D=(1/2)·(g)·(t²) to calculate how long
it takes the flower pot to fall to the ground.
1.5 m = (1/2) · (9.8 m/s²) · (t²)
t² = (1.5 m) / (4.9 m/s²)
t = 0.554 second
-- Use the formula Distance = (speed)·(time) to calculate
how far the pot traveled horizontally in that amount of time.
Distance = (8 m/s) · (0.554 sec)
Distance horizontally = 4.43 meters
Answer:
the temperature would Increase and pressure would increase
Explanation:
This would occur because the temperature would move to the liquid through conduction and the pressure would increase because the heat would cause more and more pressure
Answer:
12 mins
Explanation:
The distance covered is 5 km, divide this by 25 to get the fraction of an hour it takes. Doing this you get .2, times this by 60 min (1 hour) to get how many mins it takes
Answer:
281.25 J
Explanation:
We are told that the two objects with masses m and 3m.
Also that energy stored in the spring is 375 joules.
Now, initially the centre of mass of the system took place at rest, it means v1 = v and v2 = v/3
Thus, from principle of conservation of energy, we have;
½mv² + ½(3m)(v/3)² = 375J
(m + 3m/9)½v² = 375
(4/3)m × ½v² = 375
Multiply both sides by ¾ to get;
½mv² = 375 × ¾
½mv² = 281.25 J
Therefore, energy of lighter body is 281.25 J