Answer:
10amps
Explanation:
Given data
Power =1200W
Voltage =120V
Required
The current I
From
P=IV
I= P/V
Substitute
I=1200/120
I= 10amps
Hence the current is 10amps
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor
Answer:
60/90
Explanation:
I think because the train's highest velocity is 60 n the time is 90
Answer:
4. It is the force of the road on the tires (an external force) that stops the car.
Explanation:
If there is no friction between the road and the tires, the car won't stop.
You can see this, for example, when there is ice on the road. You can still apply the brakes (internal force), but since there is no friction (external force) the car won't stop.
The force of the brakes on the wheels is not what makes the car stop, it is the friction of the road against still tires that makes it stop.
equal and opposite reaction.